

Antagonists can be other minerals or organic compounds in the diet Excess intake of a single element can decrease the intestinal absorption of another element. Other dietary ingredients can bind up the mineral and prevent absorption Antagonists affect the absorption of the mineral into the enterocyte. Once absorbed into the enterocyte, the mineral is subject to normal regulatory pathways and is bioavailable.

Mineral-Mineral Interaction: Competing Absorption

- Divalent Metal Transporter 1 (DMT1) is a general metal transporter across the apical membrane.
- · It can transport manganese, iron and zinc.
- Copper has a primary absorption pathway using CTR1, but can also be absorbed using DMT1.
- Zinc Importer Proteins (ZIP family) can also transport manganese across the membrane.
- A diet high in a particular mineral can impact the absorption of other minerals that use the same transport proteins.
- In Wilson's disease (a defect in ATP7A) medical treatment includes high levels of zinc ingestion to limit the amount of copper that is absorbed.

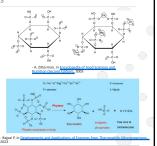
: balchem

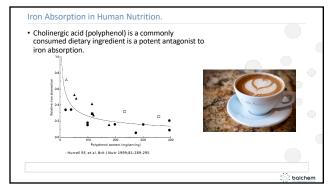
7

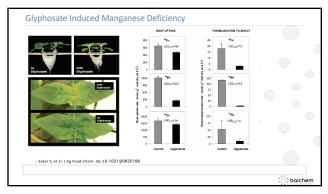
Mineral-Mineral Interactions: Decreased Bioavailability

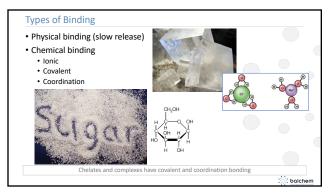
- Copper, molybdenum, and sulfur can form copper thiomolybdates.
- There are several chemical species of Cu thiomolybdates, but the tetra-thiomolybdate is the first formed.
- Copper tetra-thiomolybdates are very chemically stable, and effectively eliminate the biological activity of the copper
- The major sources of thiomolybdates can be the drinking water, and soil consumption.
- Forage can also be a significant source when the forage has been grown under certain conditions such as wet conditions or liming of soils.

- Gould L and Kendall NR. Nutr Res Rev 2011;24:176-182

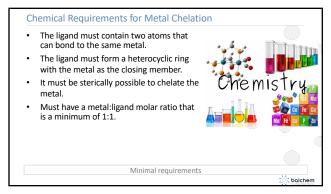

: balchem

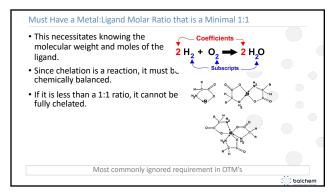

balche


8

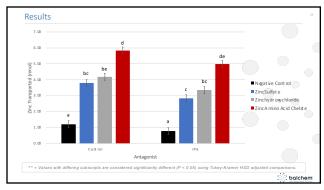

Mineral-Dietary Ingredient Interactions

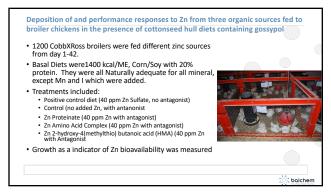
- Phytic acid is a common organic dietary ingredient found in most grains.
- Phytic acid consists of phosphate groups that bind mineral cations
 - Calcium can cross link
 Other minerals bind to the phosphate
 - moieties
- Inositol-6-phosphate (IP6) and inositol-5phosphate demonstrate the strongest antagonistic effects.
- Phytase (a phosphatase) can help neutralize the effects of phytic acid

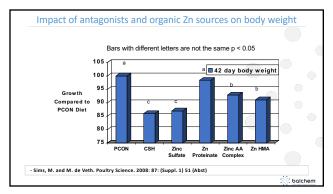


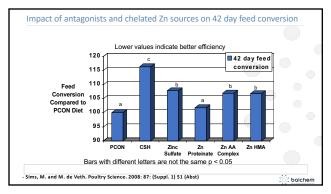


Using a Cell Culture Antagonist Model to Evaluate Zinc Absorption from Organic and Inorganic Trace Minerals


IPPE 2021


Shane C. Morgan, Zachary S. Lowman, Kenneth Sanderson, and Kari A. Estes $\,$


Balchem Corporation, New Hampton, New York, United States


17

Bioavailability of copper from copper glycinate in steers fed high dietary sulfur and molybdenum

- Sixty Angus and Angus X Simmental steers age 9 months and approximately 277 Kg BW were stratified by BW and randomly assigned to 1 of 5 treatments.

- Basal diet included 2 mg Mo/Kg DM and 0.15% S and was fed for 120 days (Phase 1).

- After 120 days, Mo was increased to 6 mg Mo/Kg DM for another 28 days (Phase 2)

- Treatments included:

- Control (basal diet)

- 5 mg Cu/kg DM from Cu sulfate

- 10 mg Cu/kg DM from Cu sulfate

- 10 mg Cu/kg DM from Cu glycinate

- 10 mg Cu/kg DM from Cu glycinate

- 10 mg Cu/kg DM from Cu glycinate

- Plasma Cu, ceruloplasmin and liver Cu was determined for each phase.

: balchem

23

- Hansen SL et al. J Anim Sci 2008;86:173-179

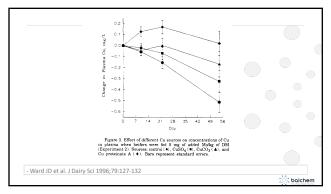
Cu indices	Cu source	Slope ± SE	P-value ²	Relative bioavailability, %	
Phase 1 ³					
Plasma Cu ⁴	Sulfate	0.017 ± 0.009	0.10	100	
	Glycinate	0.024 ± 0.011		140	
Plasma ceruloplasmin	Sulfate	0.953 ± 0.218	0.01	100	
	Glycinate	1.338 ± 0.255		140	
Liver Cu ^{4,5}	Sulfate	0.051 ± 0.010	0.12	100	
	Glycinate	0.067 ± 0.012		131	
Phase 2 ⁶					
Plasma Cu ⁴	Sulfate	0.020 ± 0.006	0.01	100	
	Glycinate	0.029 ± 0.008		144	
Plasma ceruloplasmin	Sulfate	0.646 ± 0.135	0.01	100	
	Glycinate	1.014 ± 0.158		157	
Liver Cu ^{4,5}	Sulfate	0.033 ± 0.009	0.01	100	
	Glycinate	0.050 ± 0.010		150	
¹ Based on regression of 0 kg of DM) on total supplem ² P-value for slope differe ³ Regression based on fina ⁴ Day 0 values used as a ⁵ Data log ₁₀ transformed 1 ⁶ Regression based on fina	ental Cu intake (g nces between Cu s al measurements i covariant, pefore regression :	g) of steers over the 126 sources. following 2 mg of Mo/k analysis.	d (phase 1) or 1 of DM supplem	48 d (phase 2) period. entation.	

Bioavailability of Copper Proteinate and Copper Carbonate Relative to Copper Sulfate in Cattle

40 heifers were fed diets containing additions of 0.15% S and 5 mg Mo/kg DM.

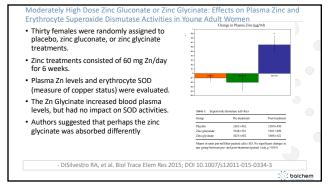
They were randomly assigned one of 4 treatments:

Control (no added Cu)


Copper Sulfate 5 mg Cu/kg DM

Cu Carbonate 5 mg Cu/kg DM

Treatments were fed for 54 days


Plasma samples were taken and analyzed for Cu content on day 0,10,28, and 54.

25

26

In a 56 X 56 day cross over trial design, non pregnant goats were fed either 269 or 2380 mg Fe/kg DM. Plasma Cu, ceruloplasmin activity and hepatic copper were measured at the outset and completion of treatment. | Experimental ration | High lines | High line

Antagonists are going to be present in the feed/water intake streams. Organic trace minerals (OTM) if properly protected as a chelate can help overcome deleterious effects of antagonists. Perhaps the increased bioavailability seen with OTMs is due to less interaction with dietary antagonists when compared to inorganics. OTMs represent the best "insurance policy" to maximize mineral nutrition in the animal which will result in a healthier animal.

