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Talk outline
• Feeding reduced-protein diets to 

dairy cows

• Why Histidine?

• Early research

• Research at Penn State

• Conclusions 



Why feeding low-protein 
diets?

• Reduced feed cost

• Striving for efficiency 

• Reduced N emissions (nitrates, NH3, 

N2O)

• Protein overfeeding and 
reproduction 



It all started with ammonia…

• Eutrophication 
of water bodies 

• Ground water 
quality 

• Air pollution

Ammonia emissions in the US

Industrial
processes

Transportation

Livestock

Fertilizer
application

Half from 
ruminants

51%



Incubation time, h
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Decreasing urinary N/urea excretion 
decreases manure ammonia emissions

Lines, P < 0.001
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Dietary CP influences soil ammonia 
emissions as well

7.0 vs 2.6 g/m2/h
P < 0.01 

Lee et al., 2016



Sources of nitrous oxide emissions in 
the United States & effect of diet CP 

USEPA, 2024



More recently, enteric methane became 
a target: low-protein & high-starch diets

Räisänen et al., 2022
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Dietary starch concentration, % of DM
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Low-protein, high-starch diets?
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increasing dietary starch concentration

P = 0.02, linear; P = 0.06, quadratic



Severe MP deficiency, however, are likely to 
decrease DMI, milk yield & components
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Or cows will lose BW
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What is Histidine? 

• Unique among EAA with an imidazole side chain
• Similar to Met, a Group 1 AA (extracted by the liver 

with post-liver supply approx. equal to mammary 
uptake and output in milk)

• Which would suggest that requirements for His 
should be similar to those for Met

• However, variability in estimates for His 
requirements have been large: 2.2 to >3.5% of MP
– Major reasons for this are: 

• endogenous His depots
• lower His than Met in microbial protein 



Net flux of Met and His

Lapierre et al., 2008



Histidine research over the 
years

Räisänen et al., 2023



Science, 1966



A. I. Virtanen; Science, 1966
Cow on normal feed Cow on synthetic feed



Histidine concentration in feeds

0

1

2

3

4

5

6

His, % of feed

Evonik AMINODat

2.58 2.68

0

2

4

6

8

Blood meal SSBM Canola meal Feather
meal

NASEM: His, % of CP



His concentration in common forages 
and protein feeds



Can His be limiting on CS-based diets? 
His supply ÷ output in grass- vs. corn silage-based diets
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Histidine work at Penn State



• Observed a consistent apparent drop in 
plasma His with long-term feeding of 
low-CP diets

• Hypothesis: on low-CP diets, microbial 
protein is becoming an increasingly 
important source of AA for the cow 

–However, compared with Met, microbial 
protein is a poorer source of His

Histidine work at Penn State



Examples of the effect 
of dietary CP/MP on 

plasma His
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Endogenous sources of His

Carnosine
Anserine

Hemoglobin

Giallongo et al., 2017:
➢ Blood hemoglobin = 380 g mHis
➢ Muscle carnosine & anserine = 270 g mHis
➢ These could supply mHis for about 7 wks 

(at approx. – 6 g mHis/d deficiency) 



Hristov et al., 2019 (data from Lee et al., 2012, 2015)

P = 0.89

P < 0.01

Body reserves can hide temporary 
His deficiencies 



His and blood hemoglobin
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Met and His in milk protein vs. 
bacteria
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NASEM (2021) AA composition of 
microbial protein

16% lower His 
than Met

Only 4% 
difference



The relative contribution of microbial
protein to the total MP supply increases with 

decreasing dietary MP

INRA data from Hristov et al., 2019



NASEM 2021 simulations

Diet CP, % Proportion of 
microbial MP 

Total mHis, g/d mHis efficiency 
(target is 0.75) 

N excretions, 
g/d

15.1 0.58 56 1.04 402

17.2 0.53 67 0.87 488

18.4 0.51 73 0.80 539
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RPHis supplementation 
at the end of the study:

+ 1.4 kg/d; P < 0.01



Blood hemoglobin, 
His, and carnosine as 

affected by His 
deficiency  

Giallongo et al., 2017
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Dose-response studies with RPHis: ECM yield 
effect with MP-adequate and -deficient diet
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Dry matter intake and milk yield across adjusted digestible His (adHis) supply



Responses to RPHis supplementation 
depend on MP supply

MP supply/MP requirements (NRC, 2001)
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Adj. dHis supply adHis supply to NEL ratio (g dHis/Mcal NEL)

<1.6, His limiting
>1.6, NEL limiting



Be aware of incorrect bioavailability 
data for RPAA!

Räisänen et al., 2020



Take-home message
• Careful reduction in dietary protein intake will increase 

milk nitrogen efficiency in dairy cows and will decrease 
urinary nitrogen losses, nitrate leaching and ammonia 
and nitrous oxide emissions from dairy manure 

• Earlier studies with grass silage-based diets and more 
recently studies with corn silage-based diets conducted at 
Penn State indicate that His may be a limiting AA in dairy 
cow fed low-protein (< 16% CP) diets
– Long-term trials showed that supplementation of such diets with rumen-

protected His increased or tended to increase milk yield and milk protein 
percent and yield, including through increasing DMI

– Our data suggest dHis recommendations for MP-deficient diets at around 
3.0% of MP, or 74 g/d

– Watch for false bioavailability data



SID His to Lys ratios of 26%, 32%, 38%, 43%, and 49% fed to 
growing pigs……. It was concluded that SID His to Lys ratio 

between 35% and 41% in diets fed to nursery pigs at 7 to 11 kg 
enhanced intestinal health and maximized concentrations of His-

containing proteins, indicating that His containing proteins are 
effective response criteria when determining His requirement



QUESTIONS?
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