

SAFETY DATA SHEET

Based upon Regulation (EC) No 1907/2006, as amended by Regulation (EU) No 2015/830

dimethylamine, liquefied, under pressure

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

Product name	: dimethylamine, liquefied, under pressure
Synonyms	: dimethylamine; DMA (=dimethylamine); methanamine, N-methyl-; N,N-dimethylamine; N-methylmethanamine
Registration number REACH	: 01-2119475495-27
Product type REACH	: Substance/mono-constituent
CAS number	: 124-40-3
EC index number	: 612-001-00-9
EC number	: 204-697-4
RTECS number	: IP8750000
Molecular mass	: 45.09 g/mol
Formula	: C2H7N

1.2. Relevant identified uses of the substance or mixture and uses advised against

1.2.1 Relevant identified uses

Chemical intermediate Fuel: additive Photographic chemical

1.2.2 Uses advised against

See heading 15.1: Reach Annex XVII - Restriction

1.3. Details of the supplier of the safety data sheet

Supplier of the safety data sheet

BALCHEM NV Westvaartdijk 85 B-1850 Grimbergen Belgium # +32 2 251 60 87 # +32 2 252 17 51 info.grimbergen@balchem.com

Distributor of the product

BALCHEM NV Westvaartdijk 85 B-1850 Grimbergen Belgium # +32 2 251 60 87 # +32 2 252 17 51 info.grimbergen@balchem.com

1.4. Emergency telephone number

24h/24h (Telephone advice: English, French, German, Dutch):

+32 14 58 45 45 (BIG)

SECTION 2: Hazards identification

2.1. Classification of the substance or mixture

Class	Category	Hazard statements
Flam. Gas	category 1	H220: Extremely flammable gas.
Press. Gas	Liquefied gas	H280: Contains gas under pressure; may explode if heated.
Acute Tox.	category 4	H332: Harmful if inhaled.
STOT SE	category 3	H335: May cause respiratory irritation.
Skin Irrit.	category 2	H315: Causes skin irritation.
Eve Dam.	category 1	H318: Causes serious eve damage.

2.2. Label elements

Created by: Brandweerinformatiecentrum voor gevaarlijke stoffen vzw (BIG) Technische Schoolstraat 43 A, B-2440 Geel http://www.big.be © BIG vzw Reason for revision: 7.2 Revision number: 0101 Publication date: 2014-10-24 Date of revision: 2015-11-20 Reference number: 1120

Product number: 10909

1/12

16453-476-en

134-

Signal word	Danger
H-statements H220	Extremely flammable gas.
H280	Contains gas under pressure; may explode if heated.
H332	Harmful if inhaled.
H335	May cause respiratory irritation.
H315	Causes skin irritation.
H318	Causes serious eye damage.
P-statements	
P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.
P280	Wear protective gloves and eye protection/face protection.
P304 + P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.
P362 + P364	Take off contaminated clothing and wash it before reuse.
P305 + P351 + P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P377	Leaking gas fire: Do not extinguish, unless leak can be stopped safely.

2.3. Other hazards

May build up electrostatic charges: risk of ignition Gas/vapour spreads at floor level: ignition hazard On contact with water/moisture : corrosive May cause frostbites

SECTION 3: Composition/information on ingredients

3.1. Substances

Name REACH Registration No	CAS No EC No	Conc. (C)	Classification according to CLP	Note	Remark
dimethylamine 01-2119475495-27	124-40-3 204-697-4		Flam. Gas 1; H220 Press. Gas - Liquefied gas; H280 Acute Tox. 4; H332 STOT SE 3; H335 Skin Irrit. 2; H315 Eye Dam. 1; H318	(1)(10)(2)(8)	Mono-constituent

(1) For H-statements in full: see heading 16

(2) Substance with a Community workplace exposure limit

(8) Specific concentration limits, see heading 16

(10) Subject to restrictions of Annex XVII of Regulation (EC) No. 1907/2006

3.2. Mixtures

Not applicable

SECTION 4: First aid measures

4.1. Description of first aid measures

General:

Check the vital functions. Unconscious: maintain adequate airway and respiration. Respiratory arrest: artificial respiration or oxygen. Cardiac arrest: perform resuscitation. Victim conscious with laboured breathing: half-seated. Victim in shock: on his back with legs slightly raised. Vomiting: prevent asphyxia/aspiration pneumonia. Prevent cooling by covering the victim (no warming up). Keep watching the victim. Give psychological aid. Keep the victim calm, avoid physical strain. Depending on the victim's condition: doctor/hospital. Never give alcohol to drink.

After inhalation:

Remove the victim into fresh air. Respiratory problems: consult a doctor/medical service.

After skin contact:

Wash immediately with lots of water. Take victim to a doctor if irritation persists. In case of frostbites: Wash immediately with lots of water (15 minutes) /shower. Remove clothing while washing. Do not remove clothing if it sticks to the skin. Cover wounds with sterile bandage. Consult a doctor/medical service. If burned surface > 10%: take victim to hospital.

After eye contact:

Rinse immediately with plenty of water for 15 minutes. Do not apply neutralizing agents. Take victim to an ophthalmologist.

After ingestion:

Not applicable.

4.2. Most important symptoms and effects, both acute and delayed

		/ /	•		
Reason for revision	n: 7.2			Publication date: 2014-10-24	
				Date of revision: 2015-11-20	
				Reference number: 1120	
Revision number: (0101			Product number: 10909	2/12

4.2.1 Acute symptoms

After inhalation:

Irritation of the respiratory tract. Irritation of the nasal mucous membranes. EXPOSURE TO HIGH CONCENTRATIONS: Respiratory difficulties. Nosebleeding. Possible laryngeal spasm/oedema. Risk of pneumonia. FOLLOWING SYMPTOMS MAY APPEAR LATER: Risk of lung oedema. After skin contact:

Tingling/irritation of the skin. Frostbites.

After eye contact:

Corrosion of the eye tissue. Lacrimation. Inflammation/damage of the eye tissue. Visual disturbances.

After ingestion:

Not applicable. 4.2.2 Delayed symptoms

No effects known.

4.3. Indication of any immediate medical attention and special treatment needed

If applicable and available it will be listed below.

SECTION 5: Firefighting measures

5.1. Extinguishing media

5.1.1 Suitable extinguishing media:

Water spray. Alcohol-resistant foam. BC powder.

5.1.2 Unsuitable extinguishing media:

Solid water jet ineffective as extinguishing medium. Carbon dioxide ineffective as extinguishing medium.

5.2. Special hazards arising from the substance or mixture

On burning: release of toxic and corrosive gases/vapours (nitrous vapours, carbon monoxide - carbon dioxide). On heating: release of toxic/combustible gases/vapours (hydrogen cyanide).

5.3. Advice for firefighters

5.3.1 Instructions:

If no hazard for/from the surroundings: controlled burning. If hazardous substances are nearby: consider extinguishment. Extinguish only if gas supply/leak can be shut afterwards. Cool tanks/drums with water spray/remove them into safety. Physical explosion risk: extinguish/cool from behind cover. Do not move the load if exposed to heat. After cooling: persistant risk of physical explosion. Dilute toxic gases with water spray. Take account of environmentally hazardous firefighting water. Use water moderately and if possible collect or contain it.

5.3.2 Special protective equipment for fire-fighters:

Gas-tight suit. Compressed air/oxygen apparatus.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Keep upwind. Seal off low-lying areas. Close doors and windows of adjacent premises. Stop engines and no smoking. No naked flames or sparks. Spark- and explosionproof appliances and lighting equipment. Avoid ingress of water in the containers.

6.1.1 Protective equipment for non-emergency personnel

See heading 8.2

6.1.2 Protective equipment for emergency responders

Gas-tight suit.

Suitable protective clothing See heading 8.2

6.2. Environmental precautions

Contain released substance, pump into suitable containers. Plug the leak, cut off the supply. Dam up the liquid spill. Tip the container on one side to stop the leakage. Try to reduce evaporation. Prevent soil and water pollution. Prevent spreading in sewers.

6.3. Methods and material for containment and cleaning up

Liquid spill: take up in dry absorbent material. Scoop absorbed substance into closing containers. Carefully collect the spill/leftovers. Damaged/cooled tanks must be emptied. Do not use compressed air for pumping over spills. Clean contaminated surfaces with an excess of water. Take collected spill to manufacturer/competent authority. Wash clothing and equipment after handling.

6.4. Reference to other sections

See heading 13.

SECTION 7: Handling and storage

The information in this section is a general description. If applicable and available, exposure scenarios are attached in annex. Always use the relevant exposure scenarios that correspond to your identified use.

7.1. Precautions for safe handling

Use spark-/explosionproof appliances and lighting system. Take precautions against electrostatic charges. Keep away from naked flames/heat. Keep away from ignition sources/sparks. Gas/vapour heavier than air at 20°C. Observe strict hygiene. Remove contaminated clothing immediately.

7.2. Conditions for safe storage, including any incompatibilities

7.2.1 Safe storage requirements:

Reason for revision: 7.2 Publication date: 2014-10-24 Date of revision: 2015-11-20 Reference number: 1120 Revision number: 0101 Product number: 10909 3/12

Storage temperature: <50 °C. Ventilation at floor level. Fireproof storeroom. Keep locked up. Provide for an automatic sprinkler system. Provide for a tub to collect spills. Provide the tank with earthing. Unauthorized persons are not admitted. Aboveground. Meet the legal requirements.

7.2.2 Keep away from:

Heat sources, ignition sources, combustible materials, oxidizing agents, (strong) acids, metals, halogens, organic materials, alcohols, water/moisture. **7.2.3 Suitable packaging material**:

Stainless steel, carbon steel.

7.2.4 Non suitable packaging material:

Copper, zinc.

7.3. Specific end use(s)

If applicable and available, exposure scenarios are attached in annex. See information supplied by the manufacturer.

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

8.1.1 Occupational exposure

a) Occupational exposure limit values

If limit values are applicable and available these will be listed below.

int value,	Time-weighted average exposure limit 8 h (Public occupational exposure limit value)			
Time-weighted avera limit value)	age exposure limit 8 h (Public occupational exposur	e 1.8 mg/m		
J. J		2 ppm		
J. J		3.8 mg/m		
i		5 ppm		
Short time value (Inc	dicative occupational exposure limit value)	9.4 mg/m		
Time-weighted aver	age exposure limit 8 h	2 ppm		
Time-weighted aver:	age exposure limit 8 h	3.8 mg/m		
Short time value		5 ppm		
Short time value		9.4 mg/m		
Time-weighted aver	age exposure limit 8 h (TLV - Adopted Value)	5 ppm		
		15 ppm		
nylamin Time-weighted average exposure limit 8 h (TRGS 900)		2 ppm		
		3.7 mg/m		
contraignante)				
contraignante)				
Short time value (VR	C: Valeur réglementaire contraignante)	2 ppm		
Short time value (VR	C: Valeur réglementaire contraignante)	3.8 mg/m		
Time-weighted avera (EH40/2005))	age exposure limit 8 h (Workplace exposure limit	2 ppm		
	age exposure limit 8 h (Workplace exposure limit	3.8 mg/m		
Short time value (W	orkplace exposure limit (EH40/2005))	6 ppm		
Short time value (W	orkplace exposure limit (EH40/2005))	11 mg/m ³		
e will be listed below.				
-				
	54			
	Publication date: 2014-10-24			
	Time-weighted aver exposure limit value Time-weighted aver exposure limit value Short time value (Ind Short time value Time-weighted aver Short time value Time-weighted aver Short time value Time-weighted aver Time-weighted aver Time-weighted aver Time-weighted aver Contraignante) Time-weighted aver Short time value (VF Short time value (VF	Time-weighted average exposure limit 8 h (Indicative occupational exposure limit value) Time-weighted average exposure limit 8 h (Indicative occupational exposure limit value) Short time value (Indicative occupational exposure limit value) Short time value (Indicative occupational exposure limit value) Short time value (Indicative occupational exposure limit value) Time-weighted average exposure limit 8 h Short time value Time-weighted average exposure limit 8 h (TLV - Adopted Value) Short time value Time-weighted average exposure limit 8 h (TRGS 900) Time-weighted average exposure limit 8 h (VRC: Valeur réglementaire contraignante) Time-weighted average exposure limit 8 h (VRC: Valeur réglementaire contraignante) Short time value (Workplace exposure limit 8 h (Workplace exposure limit (EH40/2005))		

Date of revision: 2015-11-20 Reference number: 1120

Product number: 10909

DNEL/DMEL - Workers

dimethylamine, liquefied, under pressure

Effect level (DNEL/DMEL)	Туре	Value	Remark
DNEL	Long-term systemic effects inhalation	1.027 mg/m³	
	Acute systemic effects inhalation	30.2 mg/m³	
	Acute local effects inhalation	12.9 mg/m³	
	Long-term systemic effects dermal	0.146 mg/kg bw/day	
	Acute systemic effects dermal	3.25 mg/kg bw/day	

<u>PNEC</u>

dimethylamine, liquefied, under pressure

Compartments	Value	Remark
Fresh water	0.06 mg/l	
Marine water	0.006 mg/l	
Aqua (intermittent releases)	0.06 mg/l	
STP	100 mg/l	
Fresh water sediment	3.26 mg/kg sediment dw	
Soil	0.0385 mg/kg soil dw	

8.1.5 Control banding

If applicable and available it will be listed below.

8.2. Exposure controls

The information in this section is a general description. If applicable and available, exposure scenarios are attached in annex. Always use the relevant exposure scenarios that correspond to your identified use.

8.2.1 Appropriate engineering controls

Use spark-/explosionproof appliances and lighting system. Take precautions against electrostatic charges. Keep away from naked flames/heat. Keep away from ignition sources/sparks. Measure the concentration in the air regularly. Work under local exhaust/ventilation.

8.2.2 Individual protection measures, such as personal protective equipment

Observe strict hygiene. Do not eat, drink or smoke during work.

a) Respiratory protection:

Gas mask with filter type AX at conc. in air > exposure limit. Wear gas mask with filter type B if conc. in air > exposure limit. Gas mask with filter type K at conc. in air > exposure limit. High vapour/gas concentration: self-contained respirator.

b) Hand protection:

Insulated gloves.

materials (good resistance)

- Tetrafluoroethylene.
- materials (less resistance)
- Natural rubber.

- materials (poor resistance)

Polyethylene, neoprene, nitrile rubber, PVA, PVC.

c) Eye protection:

Protective goggles.

d) Skin protection:

Head/neck protection. Protective clothing.

8.2.3 Environmental exposure controls:

See headings 6.2, 6.3 and 13

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Physical form	Liquefied gas
Odour	Irritating/pungent odour
	Unpleasant odour
	Smell of fish
	Ammonia odour
Odour threshold	0.047 - 0.34 ppm
	0.086 - 0.66 mg/m ³
Colour	Colourless
Particle size	Not applicable (gas)
Explosion limits	2.8 - 14.4 vol %
	52 - 270 g/m³
Flammability	Extremely flammable gas.
Log Kow	-0.274 ; Experimental value ; OECD 107 ; 25 °C
Dynamic viscosity	1.7 mPa.s ; 15.5 °C ; Aqueous solution ; 40 %
Kinematic viscosity	No data available
Melting point	-92 °C
Boiling point	7 °C
Flash point	-55 °C ; Closed cup ; 1013 hPa
Evaporation rate	No data available
Relative vapour density	1.6
or revision: 7.2	Publication date: 2014-10-24

Vapour pressure	1793 hPa ; 25 °C			
Solubility	water ; 24 g/100 ml			
	ethanol ; soluble			
	ether ; soluble			
Relative density	0.67 ; 7 °C			
Decomposition temperature	420 °C			
Auto-ignition temperature	402 °C			
Explosive properties	No chemical group associated with explosive properties			
Oxidising properties	No chemical group associated with oxidising properties			
рН	12 ; 4.5 %			
ther information				
Minimum ignition energy	< 0.3 mJ			
Specific conductivity	300 pS/m			

9.2

Other mormation	
Minimum ignition energy	< 0.3 mJ
Specific conductivity	300 pS/m
Critical temperature	165 °C
Critical pressure	53100 hPa
Surface tension	0.026 N/m ; 25 °C
Dissociation constant	10.732 ; рКа
Absolute density	680 kg/m³ ; 0 °C

SECTION 10: Stability and reactivity

10.1. Reactivity

May build up electrostatic charges: risk of ignition. May be ignited by sparks. Gas/vapour spreads at floor level: ignition hazard. Substance has basic reaction.

10.2. Chemical stability

Absorbs the atmospheric CO2.

10.3. Possibility of hazardous reactions

Reacts violently with many compounds e.g.: with (strong) oxidizers, with (some) acids, with oxygen compounds, with (some) halogens compounds, with organic material and with alcohols with heat release resulting in increased fire or explosion risk. Forms with nitrites carcinogenic nitrosamines.

10.4. Conditions to avoid

Use spark-/explosionproof appliances and lighting system. Take precautions against electrostatic charges. Keep away from naked flames/heat. Keep away from ignition sources/sparks.

10.5. Incompatible materials

Combustible materials, oxidizing agents, (strong) acids, metals, halogens, organic materials, alcohols, water/moisture.

10.6. Hazardous decomposition products

On heating: release of toxic/combustible gases/vapours (hydrogen cyanide). On burning: release of toxic and corrosive gases/vapours (nitrous vapours, carbon monoxide - carbon dioxide).

SECTION 11: Toxicological information

11.1. Information on toxicological effects

11.1.1 Test results

Acute toxicity

dimethylamine, liquefied, under pressure

Route of exposure	Parameter	Method	Value	Exposure time	Species	Value	Remark
						determination	
Oral	LD50	BASF test	1000 mg/kg bw		Rat (male/female)	Experimental value	Aqueous solution
Dermal	LD50	Other	3900 mg/kg bw	24 h	Rat (male/female)	Experimental value	Aqueous solution
Inhalation (gases)	LC50		5290 ppm	60 minutes	Rat (male/female)	Experimental value	

As the substance is a gas, inhalation is the most likely route of exposure

Conclusion

Harmful if inhaled.

Corrosion/irritation

dimethylamine, liquefied, under pressure

Route of exposure	Result	Method	Exposure time	Time point	Species	Value	Remark
						determination	
Eye	Serious eye damage	Draize Skin Test		24; 48; 72 hours	Rabbit	Experimental value	Aqueous solution
Skin	Corrosive	BASF test	4 h		Rabbit	Experimental value	Aqueous solution
Inhalation (gases)	Highly irritating		6 h		Rat	Experimental value	

Classification of this substance according to Annex VI is debatable as it does not correspond to the conclusion from the test The liquid form can cause frostbites, typical for all liquified gases

Conclusion

Reason for revision: 7.2	Publication date: 2014-10-24	
	Date of revision: 2015-11-20	
	Reference number: 1120	
Revision number: 0101	Product number: 10909	6 / 12

Causes serious eye damage.

Causes skin irritation.

May cause respiratory irritation.

Specific target organ toxicity, single exposure: classified as irritant to respiratory organs

Respiratory or skin sensitisation

dimethylamine, liquefied, under pressure

Route of exposure	Result	Method	 Observation time point	Species	Value determination	Remark
Skin					Data waiving	

The study on skin sensitisation does not need to be conducted as the substance is a gas

Conclusion

Not classified as sensitizing for skin

Not classified as sensitizing for inhalation

Specific target organ toxicity

dimethylamine, liquefied, under pressure

Route of exposure	Parameter	Method	Value	Organ	Effect	Exposure time		Value
								determination
Oral (drinking					Inhibition of	9 month(s)	Rat (male)	Experimental value
water)					enzyme			
					production			
Inhalation	LOAEC	Other	10 ppm	Respiratory	Affection of the	1 year(s) (6h/day, 5	Mouse	Experimental value
				tract	nasal septum	days/week)	(male/female)	
Inhalation	LOAEC	Other	10 ppm	Respiratory	Affection of the	1 year(s) (6h/day, 5	Rat (male/female)	Experimental value
				tract	nasal septum	days/week)		

As the substance is a gas, inhalation is the most likely route of exposure

Conclusion

Not classified for subchronic toxicity

Mutagenicity (in vitro)

dimethylamine, liquefied, under pressure

Result	Method	Test substrate	Effect	Value determination
Negative		Chinese hamster ovary (CHO)	No effect	Experimental value
Negative with metabolic	Ames test	Bacteria (S.typhimurium)	No effect	Experimental value
activation, negative without				
metabolic activation				

Mutagenicity (in vivo)

dimethylamine, liquefied, under pressure

	Result	Method	Exposure time	Test substrate	Organ	Value determination
[Negative		15 day(s) - 90 day(s)	Rat (male)	Bone marrow	Experimental value

Carcinogenicity

dimethylamine, liquefied, under pressure

Route of	Parameter	Method	Value	Exposure time	Species	Effect	Organ	Value
exposure								determination
Inhalation		Not further		2 year(s) (6h/day, 5	Mouse	No carcinogenic		Experimental
(gases)		determined		days/week)	(male/female)	effect		value

Reproductive toxicity

dimethylamine, liquefied, under pressure

	Parameter	Method	Value	Exposure time	Species	Effect	Organ	Value determination
Developmental toxicity	NOAEL	OECD 414	1000 mg/kg bw/day	13 day(s)	Rat	No effect		Read-across
	NOAEL	OECD 414	> 112.7 mg/kg bw/day	17 day(s)	Mouse	No effect	Foetus	Read-across
Maternal toxicity	NOAEL	OECD 414	300 mg/kg bw/day		Rat	No effect	General	Read-across
	NOAEL	OECD 414	> 225.4 mg/kg bw/day		Mouse	No effect		Read-across
Effects on fertility								Data waiving

Conclusion CMR

Not classified for carcinogenicity

Not classified for mutagenic or genotoxic toxicity

Not classified for reprotoxic or developmental toxicity

Reason for revision: 7.2

Publication date: 2014-10-24 Date of revision: 2015-11-20 Reference number: 1120 Product number: 10909

Toxicity other effects

dimethylamine, liquefied, under pressure No (test)data available

Chronic effects from short and long-term exposure

dimethylamine, liquefied, under pressure No effects known.

SECTION 12: Ecological information

12.1. Toxicity

dimethylamine, liquefied, under pressure

	Parameter	Method	Value	Duration	Species	Test design	Fresh/salt water	Value determination
Acute toxicity fishes							Fresh water	
	LC50		17 mg/l	96 h	Salmo gairdneri		Fresh water	Experimental value; Soft water
Acute toxicity invertebrates	EC50	EU Method C.2	88.67 mg/l	48 h	Daphnia magna	Static system	Fresh water	Experimental value
	TLm	EU Method C.2	105.42 mg/l	24 h	Crangon crangon	Static system	Fresh water	Experimental value
Toxicity algae and other aquatic plants	EC50	Other	9 mg/l	96 h	Selenastrum capricornutum	Static system	Fresh water	Experimental value; Growth rate
Long-term toxicity fish	NOEC	Other	≥ 10 mg/l	50 day(s)	Oncorhynchus mykiss	Flow-through system	Fresh water	Experimental value
	NOEC	Other	≥ 20 mg/l	30 day(s)	Oncorhynchus mykiss	Flow-through system	Fresh water	Experimental value
Long-term toxicity aquatic invertebrates	NOEC	OECD 211	4.2 mg/l	21 day(s)	Daphnia magna		Fresh water	Read-across
Toxicity aquatic micro- organisms	EC10	ISO 8192	> 1000 mg/l	30 minutes	Activated sludge	Static system	Fresh water	Read-across
	EC50	DIN 38412-8	47 mg/l	17 h	Pseudomonas putida	Static system	Fresh water	Read-across

Conclusion

Harmful to fishes Harmful to invertebrates (Daphnia) Toxic to algae pH shift Not harmful to activated sludge Not classified as dangerous for the environment according to the criteria of Regulation (EC) No 1272/2008

12.2. Persistence and degradability

dimethylamine, liquefied, under pressure

Method	Value	Duration	Value determination
Equivalent or similar to OECD 301F	> 60 %	13 day(s)	Experimental value
hototransformation air (DT50 air)			
Method	Value	Conc. OH-radicals	Value determination
AOPWIN v1.92	1.96 h	1.5E6 /cm ³	QSAR
iodegradation soil			
Method	Value	Duration	Value determination
	85 %	7 day(s)	Experimental value
alf-life soil (t1/2 soil)			
Method	Value	Primary degradation/mineralisation	Value determination
Not applicable			

Conclusion

Readily biodegradable in water Biodegradable in the soil

12.3. Bioaccumulative potential

dimethylamine, liquefied, under pressure

|--|

-	55 101							
	Method	Remark	Value Temperature Value determination					
	OECD 107		-0.274	25 °C	Experimental value			
Reas	on for revision: 7.2			Publication date: 2014-:	10-24			
			Date of revision: 2015-11-20					
			Reference number: 1120					
Revis	ion number: 0101			Product number: 10909		8/12		

Conclusion

Not bioaccumulative

12.4. Mobility in soil

dimethylamine, liquefied, under pressure

(log) Koc

	arameter		Method	Value		Value determination
	oc		OECD 106	OECD 106		Experimental value
V	olatility (Henry's Law constant H)					
	alue Method Tem		Temperature	Remark	Val	ue determination
	3.43E-4 Pa.m ³ /mol	SRC HENRYWIN v3.20			Cal	culated value

Conclusion

Highly mobile in soil

12.5. Results of PBT and vPvB assessment

Substance does not meet the criteria of PBT, nor the criteria of vPvB according to Annex XIII of Regulation (EC) No 1907/2006, so is neither PBT nor vPvB.

12.6. Other adverse effects

dimethylamine, liquefied, under pressure

Global warming potential (GWP)

Not included in the list of fluorinated greenhouse gases (Regulation (EU) No 517/2014)

Ozone-depleting potential (ODP)

Not classified as dangerous for the ozone layer (Regulation (EC) No 1005/2009)

SECTION 13: Disposal considerations

The information in this section is a general description. If applicable and available, exposure scenarios are attached in annex. Always use the relevant exposure scenarios that correspond to your identified use.

13.1. Waste treatment methods

13.1.1 Provisions relating to waste

Waste material code (Directive 2008/98/EC, Decision 2000/0532/EC).

16 05 04* (gases in pressure containers and discarded chemicals: gases in pressure containers (including halons) containing hazardous substances). Depending on branch of industry and production process, also other waste codes may be applicable. Hazardous waste according to Regulation (EU) No 1357/2014.

13.1.2 Disposal methods

Refer to manufacturer/supplier for information on recovery/ recycling. Remove waste in accordance with local and/or national regulations. Hazardous waste shall not be mixed together with other waste. Different types of hazardous waste shall not be mixed together if this may entail a risk of pollution or create problems for the further management of the waste. Hazardous waste shall be managed responsibly. All entities that store, transport or handle hazardous waste shall take the necessary measures to prevent risks of pollution or damage to people or animals. Do not discharge into drains or the environment.

13.1.3 Packaging/Container

Waste material code packaging (Directive 2008/98/EC).

15 01 10* (packaging containing residues of or contaminated by dangerous substances).

SECTION 14: Transport information

Road (ADR)

Rea

Revision number: 0101

14.1. UN number		
UN number	1032	
14.2. UN proper shipping name		
Proper shipping name	Dimethylamine, anhydrous	
14.3. Transport hazard class(es)		
Hazard identification number	23	
Class	2	
Classification code	2F	
14.4. Packing group		
Packing group		
Labels	2.1	
14.5. Environmental hazards		
Environmentally hazardous substance mark	no	
14.6. Special precautions for user		
Special provisions	662	
Limited quantities	none.	
ail (RID)		
14. <u>1</u> . UN number		
UN number	1032	
on for revision: 7.2	Publication date: 2014-10-24	
	Date of revision: 2015-11-20	

Reference number: 1120

Product number: 10909

14		
	.2. UN proper shipping name	
	Proper shipping name	Dimethylamine, anhydrous
14	.3. Transport hazard class(es)	
	Hazard identification number	23
	Class	2
	Classification code	2F
14	.4. Packing group	
	Packing group	
	Labels	2.1 (+13)
1.4	.5. Environmental hazards	2.1 (+15)
14		1
	Environmentally hazardous substance mark	no
14	.6. Special precautions for user	
	Special provisions	662
	Limited quantities	none.
Inlan	id waterways (ADN)	
14	.1. UN number	
	UN number	1032
14	.2. UN proper shipping name	
	Proper shipping name	Dimethylamine, anhydrous
14	.3. Transport hazard class(es)	
	Class	2
	Classification code	2 2F
		<u> </u>
14	.4. Packing group	
	Packing group	
	Labels	2.1
14	.5. Environmental hazards	
	Environmentally hazardous substance mark	no
14	.6. Special precautions for user	
	Special provisions	662
	Limited quantities	none.
Sea (IMDG/IMSBC)	
14	.1. UN number	
	UN number	1032
14	.2. UN proper shipping name	
14	Proper shipping name	Dimethylamine, anhydrous
1.4		
14	.3. Transport hazard class(es)	
	Class	2.1
14	.4. Packing group	
	Packing group	
	Labels	2.1
14	.5. Environmental hazards	
	Marine pollutant	-
	Environmentally hazardous substance mark	no
14	.6. Special precautions for user	
14	Special provisions	
	Limited quantities	none.
14	7. Transport in bulk according to Annex II of Marpol and the IBC Code	
	Annex II of MARPOL 73/78	Not applicable
∆ir /I	ICAO-TI/IATA-DGR)	
14	.1. UN number	<u> </u>
	UN number	1032
14	.2. UN proper shipping name	
	Proper shipping name	Dimethylamine, anhydrous
14	.3. Transport hazard class(es)	
	Class	2.1
1/	.4. Packing group	
14		
	Packing group	2.1
	Labels	2.1
14	.5. Environmental hazards	
	Environmentally hazardous substance mark	no
14	.6. Special precautions for user	
	Special provisions	A1
	Passenger and cargo transport: limited quantities: maximum net quantity	
	per packaging	
	<u>p - p</u>	
_	ON 15: Regulatory information	
CTIC		
	pr revision: 7.2	Publication date: 2014-10-24
		Date of revision: 2015-11-20
ison fo		

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

European legislation:

VOC content Directive 2010/75/EU

VOC content	Remark
100 %	

REACH Annex XVII - Restriction

Subject to restrictions of Annex XVII of Regulation (EC) No. 1907/2006: restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles.

	Designation of the substance, of the group of substances or of the mixture	Conditions of restriction
- dimethylamine	2 or 3, flammable solids category 1 or 2, substances and mixtures which, in contact with water, emit flammable gases, category 1, 2 or 3, pyrophoric liquids category 1 or pyrophoric solids category 1, regardless of whether they appear in Part 3 of Annex VI to that Regulation or not.	 Shall not be used, as substance or as mixtures in aerosol dispensers where these aerosol dispensers are intended for supply to the general public for entertainment and decorative purposes such as the following: metallic glitter intended mainly for decoration, artificial snow and frost, "whoopee" cushions, silly string aerosols, imitation excrement, horns for parties, decorative flakes and foams, artificial cobwebs, stink bombs.2. Without prejudice to the application of other Community provisions on the classification, packaging and labelling of substances, suppliers shall ensure before the placing on the market that the packaging of aerosol dispensers referred to above is marked visibly, legibly and indelibly with: "For professional users only".3. By way of derogation, paragraphs 1 and 2 shall not apply to the aerosol dispensers referred to in paragraphs 1 and 2 shall not be placed on the market unless they conform to the requirements indicated.

National legislation The Netherlands

Ivalit			
Waste identification (the LWCA (the Netherlands): KGA category 06		LWCA (the Netherlands): KGA category 06	
	Netherlands)		
	Waterbezwaarlijkheid	9	

National legislation Germany

Schwangerschaft Gruppe	D
	2; Classification water polluting in compliance with Verwaltungsvorschrift wassergefährdender Stoffe (VwVwS) of 27 July 2005 (Anhang 2)
TA-Luft	5.2.5;1
	5.2.5

National legislation France

No data available

National legislation Belgium

No data available

Other relevant data

TLV - Carcinogen Dimethylamine; A4

15.2. Chemical safety assessment

SECTION 16: Other information

Full text of any H-statements referred to under headings 2 and 3:

H220 Extremely flammable gas.

H280 Contains gas under pressure; may explode if heated.

H315 Causes skin irritation.

H318 Causes serious eye damage.

H332 Harmful if inhaled.

H335 May cause respiratory irritation.

(*) = INTERNAL CLASSIFICATION BY BIG

PBT-substances = persistent, bioaccumulative and toxic substances

CLP (EU-GHS) Classification, labelling and packaging (Globally Harmonised System in Europe)

Specific concentration limits CLP

dimethylamine	C ≥ 5 %	Skin Irrit. 2; H315	CLP Annex VI (ATP 0)
	C ≥ 5 %	Eye Dam. 1; H318	CLP Annex VI (ATP 0)
	0,5 % ≤ C < 5 %	Eye Irrit. 2; H319	CLP Annex VI (ATP 0)
	C ≥ 5 %	STOT SE 3; H335	CLP Annex VI (ATP 0)

The information in this safety data sheet is based on data and samples provided to BIG. The sheet was written to the best of our ability and according to the state of knowledge at that time. The safety data sheet only constitutes a guideline for the safe handling, use, consumption,

Reason for revision: 7.2	Publication date: 2014-10-24
	Date of revision: 2015-11-20
	Reference number: 1120
Revision number: 0101	Product number: 10909

storage, transport and disposal of the substances/preparations/mixtures mentioned under point 1. New safety data sheets are written from time to time. Only the most recent versions may be used. Old versions must be destroyed. Unless indicated otherwise word for word on the safety data sheet, the information does not apply to substances/preparations/mixtures in purer form, mixed with other substances or in processes. The safety data sheet offers no quality specification for the substances/preparations/mixtures in question. Compliance with the instructions in this safety data sheet does not release the user from the obligation to take all measures dictated by common sense, regulations and recommendations or which are necessary and/or useful based on the real applicable circumstances. BIG does not guarantee the accuracy or exhaustiveness of the information provided and cannot be held liable for any changes by third parties. This safety data sheet is only to be used within the European Union, Switzerland, Iceland, Norway and Liechtenstein. Any use outside of this are a is at your own risk. Use of this safety data sheet is subject to the licence and liability limiting conditions as stated in your BIG licence agreement or when this is failing the general conditions of BIG. All intellectual property rights to this sheet are the property of BIG and its distribution and reproduction are limited. Consult the mentioned agreement/conditions for details.

Revision number: 0101