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Introduction

* Feed efficiency and carbon intensity are directly correlated

* Any increase in feed efficiency reduces carbon intensity (feed C
neutral)

* Essential amino acids are required for protein synthesis, nutrient
sighaling, and conversion to other metabolites like non-essential
amino acids, enzymes and hormones

* The system is constantly running, but it is not always using the energy
efficiently — parallels energy spilling in bacteria

* There is an obligate requirement for amino acids in fatty acid synthesis
and all of this is integrated in liver and mammary metabolism butis
not well discussed



Meta-Analysis of Dietary Methionine and Lysine

Impacts on Milk Protein
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Figure 3. Plot of experiment adjusted milk protein vield (g/d)
versus model-predicted milk protein vield (solid line) response to Met
intake (g/d).

Vyas and Erdman, 2009



Meta-Analysis of Dietary Methionine and

Lysine Impacts on Milk Protein
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Figure 4. Plot of experiment adjusted milk protein vield (g/d)
versus model-predicted milk protein vield (solid line) in response to
Lvs intake (g/d).

Vyas and Erdman, 2009



‘Efficiency’ Of Essential AA Use (Additional Requirements)

|:> Oxidation

|:> Anaplerosis
|:> Synthesizing non-
essential AA

|:> Gluconeogenesis




Protein-energy interactions

“Although it has been traditional to consider ‘protein” and
‘energy’ metabolism as separate entities in mammalian
metabolism, most scientists recognize this is an artificial
divide. Indeed, they should be considered together as this
reflects how nutrients are ingested and utilized as part of
normal feeding patterns during evolution.”

Lobley, G. E. 2007. Protein-energy interactions: horizontal aspects. Pages 445-462
in Proc. Energy and protein metabolism and nutrition. Butterworths, Vichy, France.



The Conveyor Belt of Milk Component Production

« Meeting amino acid requirements improves overall nutrient and energy use efficiency for milk
and component production
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Nutrient signaling and metabolic flexibility in the

mammary gland: Key to improved NUE?

Mammary gland is one of the most adaptable organs in mammals
* Main sources of nutrient uptake for intermediary metabolism: acetate, glucose, ketones, and AA
* Ability to manipulate blood flow according to lactation requirements and in recognition of varying
nutrient supply
* Uptake to output ratio of AA in mammary gland is not uniform across AA and changes in response
to profile and supply of AA observed in circulation = Group 1, 2, and 3 AA

Milk protein synthesis requires activation/repression of key metabolic pathways
e mTORC1 and AMPk pathways

* Activated through hormone signaling (insulin, IGF-1), intracellular nutrients (AA supply; Leucine), and
energy status (ATP:AMP ratio)

* |Integrated stress response (ISR) pathway

* Reduces cellular anabolic load in the presence of intracellular stress
* Indirectly inhibited by insulin and IGF-1 and ATP status

 Unfolded protein response (UPR) pathway
e Restores endoplasmic reticulum homeostasis through multiple cellular responses
* |nitiation causes direct phosphorylation of PERK = activation of ISR pathway

Optimal supply of AA with improved energy status = Maximized anabolic output




Pathways and Regulatory Signhals for Regulation of Protein Synthesis in
the Mammary Gland
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Mammary adaptability in

varying nutrient supplies

Shifts in nutrient profile and supply =2
alterations in their efficient use according to
mammary demand.

Extraction of BCAA changes across lactation

e Cellular maintenance and anabolic response
(Mepham, 1982)

Lysine undergoes obligate catabolism in
mammary (Lapierre, 2009)
* Supplies N for NEAA synthesis
* Level of catabolism can shift in accordance
with NEAA supply

Arginine is taken up in drastic excessive
relative to milk protein output (~2.5x)
e Catabolism products include proline,
ornithine, and urea (O’Quinn et al., 2002)
* Proline content in milk casein = 10.4% (2"
highest to glutamine)

AA Group (Mepham, 1982)

Amino Acid

Efficiency
(AA —N uptake/AA-
N Milk)

1 2 3
Histidine Isoleucine Alanine
Phenylalanine Leucine Asparagine
Methionine Valine Cysteine
Tyrosine Lysine Glutamine
Tryptophan Arginine* Glycine
Threonine* Proline
Serine
1 >1.15 <1

* Suggested group according to Lapierre et al. (2012)



Interconversions in Mammary Gland Explants
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Amino Acid N uptake across the mammary
gland — Raggio et al., 2006

mmol/h Control Casein Propionate Casein +
Nitrogen Propionate

Total uptake
EAA

NEAA

Total output
EAA

NEAA
EAA in - out
NEAA in - out

163.0
31.3
81.7

156.1
68.9
87.1

12.4
-5.4

189.5
100.7
38.8
186.6
82.6
104.3

18.1
-15.5

178.0
36.4
91.7

165.2
73.0
92.2

12.4
-0.5

212.8
109.2
103.6
200.9
38.8
112.2

20.4
-8.6



“Non-Essential” Amino Acids

CO, NH, Choline
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Sources and metabolic products of arginine.
Adapted from (Morris, 2006).

Diet
l Lapierre et al. 2012
Endogenous synthesis Protein turnover
\4 / Mammary Arg uptake to
ARGININE output 2:45:1
Protein / \ Nitric oxide Range 0.88t04.18
Glutamate ]
Urea v 47 observations
Creatine
Polyamines
Proline Agmatine




Amino Acid N uptake across the mammary
gland — Raggio et al., 2006

Histidine, Methionine,
Phenylalanine, Tryptophan

BCAA, Lysine, Threonine
Group 2 AA

Glx, Asx, Serine, Glycine,
Proline, Cysteine

Group 1 AA Group 3 AA
g @ NV
In = Out In < Out In > Out




Amino Acid Carbon Balance — Half Mammary Gland (grams)

- Group 1 AA Group 2 AA Group 3 AA

Intake
Output 133 246 259 638
Difference 1 29 -47 -17

Lobley, 2007; Lemosquet et al., 2009



Fate of Carbon from Amino Acids — Lobley, 2007
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Non-Essential AA Infusions in Fresh Cows

Bahloul et al., 2021  + 9 Holstein Cows, Calving to 50 DIM
2 Trts: TAA or EAA, Casein AA Profile
e Abomasal infusions
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Effects of Lys on milk fat synthesis in the absence of

Fatty Acids.
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Effects of Lysine on Milk Fat Synthesis in the Presence
of Fatty Acids
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Effects of Lysine together with Fatty Acids on Milk Fat Synthesis
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Effects of PI3K Inhibition on Lysine Stimulated FABP5 Expression
and SREBP-1c Expression and Maturation
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Lysine and Milk Fat

* In this study , using bovine mammary epithelial cells, Lysine-induced

fatty acid-dependent SREBP-1c expression and maturation was used.
SREBP-1c

 SREPB-1 is a key regulator of fatty acid synthesis in the mammary
gland (Li et al., 2014) and is also sensitive to insulin

* This was done through regulation of theGPRC6A- the G protein-
coupled receptor class 6A — which induces the PI3K/AKT (phosphatidy
linositol 3-kinase) pathway

 FABP5 — Fatty acid binding protein 5 which regulates lipid metabolism



Effects of feeding rumen-protected lysine during the
postpartum period on performance and amino acid profile in
dairy cows: A meta-analysis

Lysine % MP

6.5 8.5 SEM P
Milk, kg 32.1 34.0 1.3 0.02
ECM, kg 33.4 35.8 1.6 0.03
Milk fat, % 3.68 3.73 0.12 0.07
Milk fat, kg 1.17 1.27 0.06 0.05
Milk protein, % 3.09 3.18 0.03 0.04
Milk protein, kg 0.99 1.06 0.05 0.07
Lactose, % 4.81 4.72 0.07 0.14

Arshad et al., 2024



Effects of feeding rumen-protected lysine during the
postpartum period on performance and amino acid profile in
dairy cows: A meta-analysis
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Amino Acids and De Novo FA Synthesis

* Lys increased enzymes related to de novo FA synthesis (ACS, ACC,
FAS) through upregulation of FABP and SREBP1 (Li et al., 2019)

* Further increased when supplemented with palmitic acid and
oleic acid

* Additionally, Met and Leu increase expression of SREBP1—
important regulator of enzymes for milk FA synthesis (Li et al.,
2019).

* Arg increased de novo and mixed FA synthesis and expression of
ACC, SCD, DGAT1 (Ding et al., 2022)



Fatty Acid Synthetase (FAS)

* FAS synthesizes de novo FA by elongating FA carbon chain

e Active sites with AA essential for function and transfer of intermediates
during elongation of de novo FA
* His, Lys, Ser, Cys (Smith et al., 2003; Wettstein-Knowles et al., 2005)

* FAS expression decreased in His- and Lys-deficient human liver cell medium
(Dudek and Semenkovich, 1995)

* This was reversible when His and Lys were reintroduced

* Expression of FAS increased by adding both NEAA and EAA compared each
treatment individually (Fukuda and Iritani, 1986)

* FAS complex likely has requirement for both types of AA



Amino Acid Composition of Bovine Mammary FAS

Amino Acid Composition of Mammary Fatty Acid
Syvnthetases from Cow, Rat, and Rabbit

Moles/105 g enzyme

Amino acid Bovine  Rat? RabbitP
Lysine 37.9 32.0 25.5
Histidine 19.8 23.0 14.0
Arginine 31.5 39.0 34.0
Aspartic acid 1535;_] 62.0 47.0

=1 e oIThTeE 37 41.0 26.5
Serine 51.7 59.6 35.5
Glutamic acid 104.3 I 84.7 71.0
Proline 55.0 47.5 42.6
Glycine 59.1 63.0 49.0
Alanine 57.1 68.0 62.0
Half-cystine 12.8 11.7
Valine 49.6 55.8 45.0
Methionine 1L.3.0 14.4 -
Isoleucine 30.5 28.2 19.0
Leucine Q0.7 05.6 T70.4

1 . 18.2 100
Phenvlalanine 24.1 26.3 18.7
Tryptophan 16.9 16.3 -

dData of Smith and Abraham (10).
PData of Carey and Dils (11). Kinsella et al., 1975



Optimum Supply Of Each EAA Relative To
Metabolizable Energy - CNCPS v7/.0

Etficiency Lapierre et AA
AR R? ef\:;:‘act’i‘gn al?(2007) Mgcal I\{IE 7% EAA
Arg 0.81 0.61 0.58 2.04 10.2%
His 0.84 0.77 0.76 0.91 4.5%
lle 0.74 0.67 0.67 2.16 10.8%
Leu 0.81 0.73 0.61 3.42 17.0%
Lys 0.75 0.67 0.69 3.03 15.1%
Met 0.79 0.57 0.66 1.14 5.7%
Phe 0.75 0.58 0.57 2.15 10.7%
Thr 0.75 0.59 0.66 2.14 10.7%
Trp 0.71 0.65 N/A 0.59 2.9%
Val 0.79 0.68 0.66 2.48 12.4%

Lys and Met requirements 14.9%, 5.1% - Schwab (1996) 2.9:1
Lys and Met requirements 14.7%, 5.3% - Rulquin et al. (1993) 2.77:1




Variation exists when contextualizing efficiency of
use with amino acid and energy supply

1.2 R2=0.78 1.2
RMSE = 0.07
Efficiency of use: 0.53 1.0
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Experimental design to test
amino acid balancing

14-week longitudinal feeding trial

144 cows balanced in 9, 16-cow pens
3 Diets formulated using CNCPS v.7:

1. Optimum g EAA/Mcal ME (14.8% CP) > Control
2. -1Std Dev g EAA/Mcal ME (14.0% CP) - ‘Negative’
3. +1 Std Dev g EAA/Mcal ME (16.3% CP) > ‘Positive’
All diets formulated to be iso-caloric and in ME excess
O Nitrogen intestinal digestibility tested (Gutierrez-Botaro et al., 2022)
O Feed AA profile updated to refine supply (van Amburgh et al., 2017)

LaPierre et al, 2019




Dietary Ingredients, % DM

Negative

Control

Positive

Corn silage

High moisture ear corn
Canola

Triticale

Corn grain

Soybean meal
Soyhulls

Bloodmeal

Dextrose

SoyPlus

Energy booster

Urea

Smartamine M
Smartamine ML
Minerals and vitamins

51.5
9.4
1.8
7.3
6.4
8.2
9.3
0.0
1.6
0.00
0.73
0.62
0.00
0.00
3.3

51.5
9.5
9.2
7.3
6.4
5.6
3.8
0.0
1.6
0.91
0.73
0.51
0.04
0.00
2.9

50.4
9.9
6.3
8.0
6.0
2.7
2.8
3.1
2.2
3.6
0.91
0.51
0.05
0.07
3.2

LaPierre et al, 2019




Chemical Component, % DM

Negative

Control

Positive

Dry Matter, %
Crude Protein
ADICP, % CP
NDICP, % CP
aNDFom
Lignin

Sugar

Starch

Fat

Ash
Ammonia
RDP, % DM
ME, Mcal/kg

44.7

14.0
5.70
15.0

32.4

2.61
3.95

29.8

3.50
6.60
0.80

9.50
2.58

44.5
14.7
5.90
15.5
31.0
3.00
4.10
29.3
3.60
6.90
0.90

9.65
2.60

44.2
16.0
5.50
18.7
31.4
2.70
3.90
29.3
3.80
6.60
0.80

9.50
2.61

LaPierre et al, 2019




w

P

Metabolizable supply, g-d
Arginine

Histidine

Isoleucine

Leucine

Lysine

Methionine
Phenylalanine
Threonine
Tryptophan
Valine
Lys:Met

Negative

141.1°
60.6°
146.0°
223.9°
201.5°
69.5°
148.4°
142.6°
45.1%
157.9°

Control

153.2°
66.1°
155.2°
239.2°
214.0°
74.1°
155.3P
154.6°
47.0%
170.6°

2.90%

2.89%

Positive

154.1°
87.1°
146.92
285.5°¢
248.1°
88.3¢
178.3¢
166.8°¢
42.2°
196.3¢
2.81°

SEM
1.6
0.7
1.7
2.6
2.3
0.8
1.7
1.6
0.5
1.8

0.003

Diet
<0.01
<0.01

0.02
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01

LaPierre et al, 2019

ab Within a row, means without a common superscript differ (P < 0.05) ¥ Within a row, means without a common superscript differ (P <0.10)




Diet

p

Parameters
Intake and lactation performance, kg/d

Dry matter intake
Milk yield
Energy corrected milk yield
3.5% fat corrected milk
True protein yield
Fat yield
Lactose yield
Milk urea nitrogen, mg/dL
Body weight and condition
Body weight change, kg-wk?
Final BCS, 1-5 scale
Feed and N efficiency
Milk Yield:DMI
ECM:DMI
Milk N:Feed N

Negative

25.9
37.62
40.32
41.073
1.14a
1.54x
1.79a3
10.52

1.73
2.89

1.47°
1.582

0.328¢

Control

26.4

40.5b

43.3b

43.7b
1.27b
1.61y
1.93b

11.2°

2.39
2.90

1.57b
1.68P
0.343°

Positive

26.4
41.6b
44.2b
44.6b
1.29b
1.65Y
1.97b
13.6¢

2.14
2.91

1.59P
1.69P

0.321°@

Enroll

0.41
0.37
0.01
0.01
0.23
0.05
<0.01
<0.01

<0.01

Diet

0.37
<0.01
<0.01
<0.01
<0.01

0.07
<0.01
<0.01

0.43
0.71

<0.01
<0.01
<0.01

CaPierre et al, 2019



Two herds in Southern PA — both between 100 and 150 cows with diets
formulated using similar dietary metrics as the previous study — these
values represent the whole herd - these are Holstein cattle. Milk fat in both
herds was about 4.2% before dietary interventions. Milk protein was
approximately 3.1% prior to diet change.

Milk yield, Ib Milk yield, Ib

Milk fat, % 4.64 Milk fat, % 4.76
Milk true protein, % 3.48 Milk true protein, % 3.46
Milk fat yield, |b 4.12 Milk fat yield, b 4.3

Milk protein yield, Ib 3.13 Milk protein yield, Ib 3.13



Take home messages

* Insulin is involved in protein synthesis in the mammary gland — for
both milk protein and fat

* Amino acids have other roles that involve signaling and supporting
the metabolism of other products, such as milk fat and lactose

* Fatty acid enzymes are inducible and sense supplies of nutrients

* Amino acids, such as Lysine, can induce enzymes and signal
pathways related to fatty acid synthesis and are required for
optimum milk fatty acid yield

* To improve feed efficiency, formulating the correct amount of
metabolizable essential amino acids relative to metabolizable
energy Is hecessary



Thank you for your attention

mevl@cornell.edu
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