

Introduction

- Feed efficiency and carbon intensity are directly correlated
 Any increase in feed efficiency reduces carbon intensity (feed C neutral)
- Essential amino acids are required for protein synthesis, nutrient signaling, and conversion to other metabolites like non-essential amino acids, enzymes and hormones
- The system is constantly running, but it is not always using the energy efficiently parallels energy spilling in bacteria
- There is an obligate requirement for amino acids in fatty acid synthesis and all of this is integrated in liver and mammary metabolism but is not well discussed

2

Introduction

- This talk will focus on milk components however it is important to appreciate the interaction between amino acids and fatty acids in enhancing milk components
- This aspect of nutrition is rarely, if ever, discussed, yet observations are available demonstrating the impact of the interactions
- And consideration of the right precursors for milk fat yield are also
 important

Perspective

- Based on evaluations by J. Cole and C. Dechow, the genetic capacity for milk yield for Holsteins is approximately 75,000 lb
 There are cows on commercial farms in Central NY in high performing herds that are peaking in milk yield between 186 to 214 lb/d (>44,0000 lb/lactation)
- My perspective is that many cows in a herd have this capacity.
- Leads to the question, what are we doing, and when, that either detracts from or fails to "turn on" that ability and when is that communicated to the animal?

CornellCALS College of Agriculture and Life Sciences

SID amino acids ¹ 15 to 25 to 55 to 130 to 175 to 220 to Getating L Lysine, % ² 1.35 1.25 1.80 0.88 0.78 0.70 0.60 Amino acids ¹ 1.25 1.25 1.80 0.88 0.78 0.70 0.60 Amino acids to lysine raito, % ¹ methoinine 28 28 28 28 28 28 29 Methoinine r Cysteine 56 56 56 57 58 68-70 Threenine 62 62 62 63 64 74-76	Lactatin
Lysine, % ² 1.35 1.25 1.88 0.88 0.78 0.70 0.60 Amino acid to lysine ratio, % ² - - </th <th></th>	
Amino acid to lysine ratio, % ³ Methionine + Cysteine 56 56 56 56 57 58 68/70 Methionine + Cysteine 56 56 56 56 57 58 68/70 Threenine + Care 62 62 62 62 63 64 74/76	1.05
Methionine + Cysteine 26 20 </th <th>10 10</th>	10 10
Threonine 62 62 62 62 63 64 74-76	28-29
Theonine 02 02 02 02 03 04 74-70	62.64
Tomtophan 19 19 18 18 18 18 19.71	10.71
Inspectional 17 17 10 10 10 10 1721	56
Valine 67 67 68 68 68 68 71-76	64-70
-Minimum tyine levels considering a diet with 1,150 kail NE/Ib for growing pigs, 1,130 kail NE/Ib for gestating sows, and 1,1 NE/Ib for lacating sowsMinimum ratios to achieve approximately 95% of maximum growth performance. Minimum ratios of threanine, tryptophani isoleucine, and valine can be greated expending on diet formulation.	1,160 kcal han,

Protein-energy interactions

"Although it has been traditional to consider 'protein' and 'energy' metabolism as separate entities in mammalian metabolism, most scientists recognize this is an artificial divide. Indeed, they should be considered together as this reflects how nutrients are ingested and utilized as part of normal feeding patterns during evolution."

Lobley, G. E. 2007. Protein-energy interactions: horizontal aspects. Pages 445-462 . Energy and protein metabolism and nutrition. Butterworths, Vichy, Fran

10

11

Nutrient signaling and metabolic flexibility in the mammary gland: Key to improved component yields?

Milk protein synthesis requires activation/repression of key metabolic pathways

- protein synthesis requires activation/repression of Key metabolic pathways
 mTORC1 and AMPk pathways
 Activated through hormone signaling (insulin, IGF-1), intracellular nutrients (AA supply; Leucine), and
 energy status (ATP:AMP ratio)
 Integrated stress response (ISR) pathway
 Reduces cellular anabolic load in the presence of intracellular stress
 Indirectly inhibited by insulin and IGF-1 and ATP status
 Unfolded protein response (UPR) pathway

- Restores endoplasmic reticulum homeostasis through multiple cellular responses Initiation causes direct phosphorylation of PERK → activation of ISR pathway

Optimal supply of AA with appropriate energy status ightarrow Maximized anabolic output

Insulin Effect on Milk Component Synthesis

nsulin mav re Fable 1. Least squ	gulate mTC ares means for	OR complex DMI, milk vield	that affects , and milk prote	downstrean	and vield.	id prote
		Trea	tment ¹			n2
Variable	Water	CB	Water+I	CB+I	SEM	INS
DMI, ³ kg/d Milk yield, kg/d	26.2 26.5 ^b	27.6 27.5 ^b	25.1 28.3 ^{ab}	25.2 29.8 ^a	1.2 2.4	0.09
Milk protein % kg/d	3.29 ^b 0.867 ^c	3.31 ^b 0.895 ^c	3.52 ^a 0.995 ^b	3.66 ^a 1.080 ^a	0.185 0.073	$0.001 \\ 0.001$

Lysine and Milk Fat

- In this study, using bovine mammary epithelial cells, Lysine-induced fatty acid-dependent SREBP-1c expression and maturation was used. SREBP-1c
- SREPB-1 is a key regulator of fatty acid synthesis in the mammary gland (Li et al., 2014) and is also sensitive to insulin
- This was done through regulation of theGPRC6A- the G proteincoupled receptor class 6A – which induces the PI3K/AkT (phosphatidy linositol 3-kinase) pathway
- FABP5 Fatty acid binding protein 5 which regulates lipid metabolism

20

Effects of feeding rumen-protected lysine during the postpartum period on performance and amino acid profile in dairy cows: A meta-analysis								
Lysine % MP								
	6.5	8.5	SEM	Р				
Milk, kg	32.1	34.0	1.3	0.02				
ECM, kg	33.4	35.8	1.6	0.03				
Milk fat, %	3.68	3.73	0.12	0.07				
Milk fat, kg	1.17	1.27	0.06	0.05				
Milk protein, %	3.09	3.18	0.03	0.04				
Milk protein, kg	0.99	1.06	0.05	0.07				
Lactose, %	4.81	4.72	0.07	0.14				
				Arshad et al., 2024				

Amino Acids and De Novo FA Synthesis

- Lys increased enzymes related to de novo FA synthesis (ACS, ACC, FAS) through upregulation of FABP and SREBP1 (Li et al., 2019)
 Further increased when supplemented with palmitic acid and oleic acid
- Additionally, Met and Leu increase expression of SREBP1– important regulator of enzymes for milk FA synthesis (Li et al., 2019).
- Arg increased de novo and mixed FA synthesis and expression of ACC, SCD, DGAT1 (Ding et al., 2022)

23

Fatty Acid Synthetase (FAS)

- FAS synthesizes de novo FA by elongating FA carbon chain
- Active sites with AA essential for function and transfer of intermediates during elongation of de novo FA
 His, Lys, Ser, Cys (Smith et al., 2003; Wettstein-Knowles et al., 2005)
- FAS expression decreased in His- and Lys-deficient human liver cell medium (Dudek and Semenkovich, 1995)
 This was reversible when His and Lys were reintroduced
- Expression of FAS increased by adding both NEAA and EAA compared each treatment individually (Fukuda and Iritani, 1986)
 FAS complex likely has requirement for both types of AA

AA	R ²	Efficiency from our	Lapierre et	g AA/ Mcal ME	% EAA
Ara	0.91	evaluation	0.59	2.04	10.2%
Aig	0.01	0.01	0.38	2.04	1 5%
HIS	0.84	0.77	0.76	0.91	4.5%
iie	0.74	0.67	0.67	2.16	10.8%
Leu	0.81	0.73	0.61	3.42	17.0%
Lys	0.75	0.67	0.69	3.03	15.1%
Met	0.79	0.57	0.66	1.14	5.7%
Phe	0.75	0.58	0.57	2.15	10.7%
Thr	0.75	0.59	0.66	2.14	10.7%
Trp	0.71	0.65	N/A	0.59	2.9%
Val	0.79	0.68	0.66	2.48	12.4%

Dietary Ingredients, % DM	Negative	Control	Positive	
Corn silage	51.5	51.5	50.4	
High moisture ear corn	9.4	9.5	9.9	
Canola	1.8	9.2	6.3	
Triticale	7.3	7.3	8.0	
Corn grain	6.4	6.4	6.0	
Soybean meal	8.2	5.6	2.7	
Soyhulls	9.3	3.8	2.8	
Bloodmeal	0.0	0.0	3.1	
Dextrose	1.6	1.6	2.2	
SoyPlus	0.00	0.91	3.6	
Energy booster	0.73	0.73	0.91	
Urea	0.62	0.51	0.51	
Smartamine M	0.00	0.04	0.05	
Smartamine ML	0.00	0.00	0.07	
Minerals and vitamins	3.3	2.9	3.2	LaPierre et al, 201

Chemical Component, % DM	Negative	Control	Positive	
Dry Matter, %	44.7	44.5	44.2	
Crude Protein	14.0	14.7	16.0	
ADICP, % CP	5.70	5.90	5.50	
NDICP, % CP	15.0	15.5	18.7	
aNDFom	32.4	31.0	31.4	
Lignin	2.61	3.00	2.70	
Sugar	3.95	4.10	3.90	
Starch	29.8	29.3	29.3	
Fat	3.50	3.60	3.80	
Ash	6.60	6.90	6.60	
Ammonia	0.80	0.90	0.80	
RDP, % DM	9.50	9.65	9.50	
ME, Mcal/kg	2.58	2.60	2.61	LaPierre et al, 2

		Diet e	irams EAA		Р
Metabolizable supply, g·d ⁻¹	Negative	Control	Positive	SEM	Diet
Arginine	141.1ª	153.2 ^b	154.1 ^b	1.6	< 0.01
Histidine	60.6ª	66.1 ^b	87.1 ^c	0.7	< 0.01
Isoleucine	146.0ª	155.2 ^b	146.9ª	1.7	0.02
Leucine	223.9ª	239.2 ^b	285.5 ^c	2.6	< 0.01
Lysine	201.5ª	214.0 ^b	248.1 ^c	2.3	< 0.01
Methionine	69.5ª	74.1 ^b	88.3 ^c	0.8	< 0.01
Phenylalanine	148.4ª	155.3 ^b	178.3 ^c	1.7	< 0.01
Threonine	142.6 ^a	154.6 ^b	166.8 ^c	1.6	< 0.01
Tryptophan	45.1 ^{ax}	47.0 ^{ay}	42.2 ^b	0.5	< 0.01
Valine	157.9ª	170.6 ^b	196.3°	1.8	< 0.01
Lys:Met	2.90 ^{ax}	2.89 ^{ay}	2.81 ^b	0.003	< 0.01
				LaF	vierre et al,

		Diet				Р
Parameters	Negative	Control	Positive	SEM	Enroll	Diet
Intake and lactation performance.	kg/d					
Dry matter intake	25.9	26.4	26.4	0.27	0.41	0.37
Milk yield	37.6ª	40.5 ^b	41.6 ^b	0.40	0.37	< 0.01
Energy corrected milk yield	40.3ª	43.3 ^b	44.2 ^b	0.51	0.01	< 0.01
3.5% fat corrected milk	41.0ª	43.7 ^b	44.6 ^b	0.55	0.01	< 0.01
True protein yield	1.14ª	1.27b	1.29b	0.02	0.23	< 0.01
Fat yield	1.54×	1.61 ^y	1.65 ^y	0.07	0.05	0.07
Lactose yield	1.79ª	1.93 ^b	1.97 ^b	0.04	< 0.01	< 0.01
Milk urea nitrogen, mg/dL	10.5ª	11.2 ^b	13.6°	0.14	< 0.01	< 0.01
Body weight and condition						
Body weight change, kg-wk ⁻¹	1.73	2.39	2.14	0.35	< 0.01	0.43
Final BCS, 1-5 scale	2.89	2.90	2.91	-	-	0.71
Feed and N efficiency						
Milk Yield:DMI	1.47ª	1.57 ^b	1.59 ^b	0.02	0.71	< 0.01
ECM:DMI	1.58ª	1.68 ^b	1.69 ^b	0.02	0.26	< 0.01
Milk N:Feed N	0.328ª	0.343 ^b	0.321ª	0.004	< 0.01	< 0.01

Stage of lactation	Fermentable NSCHO, %DM	Fermentable starch, %DM	Fermentable sugar, %DM	Fermentable soluble fiber, %DM
Early	40-41	18.5 - 20	8	8
Peak	43	22 - 25	8	7
Mid	40	18.5 – 20.5	6	6
For high de Onda range in	n cows – 86% arza and Ho nproved mic	% to 90% rur over: Sugar robial yield a	ninal starch • in the 6% t and fiber dige	digestion o 8% DM estion –

Irish Pasture Grass Nutrient					
Composition	Composition				
	D	liet			
Nutrient composition	G	G+RB			
CP, % of DM	16.3	15.4			
Starch, % of DM	2.2	14.4			
WSC, % of DM	23.9	19.3			
NFC, % of DM	37.7	43.5			
aNDFom, % of DM	36.3	32.7			
12-h uNDFom, % of aNDFom	50.9	-			
30-h uNDFom, % of aNDFom	20.9	-			
72-h uNDFom, % of aNDFom	-	-			
120-h uNDFom, % of aNDFom	11.8	-			
240-h uNDFom, % of aNDFom	9.9	-			
Ether extract, % of DM	3.1	2.9			
Ash, % of DM	6.6	5.6			
	Din	een et al. 2020			

Make Use of Fatty Acids

- Data emerging demonstrating that the profile of fatty acids at different stages of lactation impact insulin signaling
- Data from Lock et al and McFadden et al labs
- Implication is the cow has a FA requirement or a certain profile of FA improves energetic efficiency by altering partitioning of energy

37

		Treat	ment ¹	
Item	80:10	73:17	66:24	60:30
Ingredient, % of DM				
Corn silage	25.5	25.5	25.5	25.5
Alfalfa silage	16.3	16.3	16.3	16.3
Wheat straw	5.32	5.32	5.32	5.32
Ground corn	15.9	15.9	15.9	15.9
High-moisture corn	14.2	14.2	14.2	14.2
Soybean meal	12.1	12.1	12.1	12.1
Sovhulls	4.82	4.76	4.70	4.65
Protein supplement ²	1.09	1.09	1.09	1.09
C16:0-enriched FA supplement ³	1.37	1.06	0.76	0.48
Ca salts of palm FA supplement ⁴	0.17	0.54	0.90	1.23
Mineral and vitamin mix ⁵	3.23	3.23	3.23	3.23
Nutrient composition, ⁶ % of DM				
NDF	29.0	29.0	29.0	29.0
CP	16.5	16.5	16.5	16.5
Starch	28.8	28.8	28.8	28.8
FA	4.00	3.98	4.00	3.98
16:0	1.58	1.44	1.33	1.26
18:0	0.05	0.04	0.04	0.04
cis-9 18:1	0.68	0.78	0.88	0.98
cis-9, cis-12 18:2	1.25	1.25	1.27	1.29
cis-9, cis-12, cis-15 18:3	0.20	0.20	0.20	0.20

Take Home

- Cows have requirements for fatty acids like they do for amino acids – we just haven't figured it out yet
- It looks like when we feed a certain ratio of palmitic (16:0) to oleic (C18:1) the efficiency of use of absorbed nutrients increases
- 1.5:1 for Palmitic:Oleic and this is for intake
- For example, if you are supplying 280 g C16:0, you should formulate about 180 g of C18:1 to optimize the component response

41

AA	R ²	Efficiency from our evaluation	Lapierre et al. (2007)	g AA/ Mcal ME	% EAA
Arg	0.81	0.61	0.58	2.04	10.2%
His	0.84	0.77	0.76	0.91	4.5%
lle	0.74	0.67	0.67	2.16	10.8%
Leu	0.81	0.73	0.61	3.42	17.0%
Lys	0.75	0.67	0.69	3.03	15.1%
Met	0.79	0.57	0.66	1.14	5.7%
Phe	0.75	0.58	0.57	2.15	10.7%
Thr	0.75	0.59	0.66	2.14	10.7%
Trp	0.71	0.65	N/A	0.59	2.9%
Val	0.79	0.68	0.66	2.48	12.4%

Review of recent experiment evaluating nutrient use efficiency

Dose titration of Rumensin – nothing to do with amino acids, except the diets were formulated using the latest information related to AA levels and other components of the diet like fatty acids, sugar and starch level

192 cows were used in a replicated pen study

16 cows per pen, milked 3x per day

Prior to the experiment, the cows were producing 42 kg, 4.1% fat and 3.1% true protein

Benoit et al., JDS abstract 2022

Rume	Rumen modifier study diet chemistry – formulated					
	DM, %	45.1				
	CP, %	15.75				
	Sol CP, %CP	31.5				
	aNDFom, %	31.6				
	Sugar, %	4.92				
	Starch, %	26.33				
	EE, %	4.4				
	ME, mcal/kg	2.65				
	ME, Mcal @25.5 kg DMI	68				
	Forage, % DMI	54.3				
	Forage, %BW	0.93				
	Methionine, g/Mcal ME	1.19				
	Lysine, g/Mcal ME	3.2				
	Methionine, g	82				
	Lysine, g (methionine x 2.7)	222				

Diet/Intake related information – Methionine and Lysine levels

Cows consumed approximately 71-72 mcals per day

Methionine @ 1.19g/Mcal = 1.19* 71.5 = 85 g

Lysine @ 2.7 times Met = 85g * 2.7 = 229 g

Histidine similar to Methionine

These levels are what we consider the true requirement to be based on the last 10 years of research

Meeting the requirements should improve energetic efficiency and milk component yields

46

Milk fat,	protein	and	urea	nitrogen	of	COWS	fed	four	leve	ls of	rume	en
modifier	r											

	Treatment					
item	0	11g	14.5g	18g	SEM	P-Value
DMI, kg/d	26.9	26.8	26.7	27.7	0.31	0.21
Milk Yield, kg/d	39.1	39.9	39.6	39.6	0.4	0.33
ECM, kg/d,	45.9	46.9	47.1	46.8	0.51	0.11
Milk fat, %	4.60	4.67	4.72	4.67	0.05	0.2
Milk fat, kg	1.79	1.83	1.85	1.83	0.02	0.02
Milk true protein, %	3.35	3.38	3.37	3.39	0.01	0.07
Milk protein, kg	1.30	1.33	1.32	1.33	0.01	0.15
MUN, mg/dL	8.92	10.20	9.65	9.56	0.12	<0.01
					Ben	bit et al. JD:

47

Effect of Rumen Protected Methionine and Lysine on Energy Corrected Milk Yield (and don't forget about Histidine...)

- •
- •
- 144 cows assigned to a replicated pen study Three levels of rumen protected Methionine Lysine was held constant at 3.2 g metabolizable AA per Mcal ME •
- Histidine was similar to the highest Methionine level
- Methionine was fed at 0, 1.05 and 1.19 g metabolizable Met per Mcal ME
- 14-day covariate, 84-day treatment; 75% multiparous, 25% primiparous cattle per pen
- The diet was adjusted to meet the AA formulations but did not contain • all the modifications we would want for milk components

Danese et al. unpublished

144 cows, replicated pen, 16 cows/pen	Diet, g Metabolizable Met/Mcal ME				
Parameter	0.86	1.05	1.19	SEM	P value
Body Weight, kg	698	705	701	3.3	0.30
Delta BW, kg	16.4	23.9	9.8	6.8	0.35
Dry Matter Intake, kg	26.4	26.5	26.1	0.3	0.59
Milk Yield, kg	44.6	45.3	44.8	0.38	0.38
ECM, kg	48.8ª	50.2 ^b	50.4 ^b	0.44	0.02
ECM to DMI	1.87	1.88	1.92	0.017	0.21
Milk True Protein, g/100g Milk	3.09ª	3.24 ^b	3.34 ^c	0.010	< 0.01
Milk True Protein, kg	1.38 ^a	1.46 ^b	1.49 ^b	0.011	< 0.01
Milk Fat, g/100g Milk	4.21ª	4.25ª	4.36 ^b	0.026	< 0.01
Milk Fat, kg	1.88	1.92	1.94	0.023	0.16
MUN, mg/dL	11.20	11.44	11.09	0.120	0.12

	Diet, g Metabolizable Met/Mcal ME						
		0.86	1.05	1.19	SEM	P value	
	N Intake, g	669	671	673	5.9	0.91	
	Productive N, g	235 ^a	241 ^b	250 ^c	1.7	< 0.01	
	Urinary N, g	193 ^y	189 ^{xy}	181×	3.6	0.09	
	Productive:Urinary N	1.22	1.28	1.38			
At th ECM	At the 1.19 supplementation level, the difference between milk volume and CM was 9.4 to 13 lb demonstrating a 4% increase in energetic efficiency					and :y	
In thi 6.4%	s study, between the sar	ne treat	ments, t	he incre	ase in	N efficiency	was

Holstein dairy ir	Holstein dairy in Northern NY - 3,700 cow					
90+ pounds m	90+ pounds milk/d in April					
	Bulk Tank 1 Bulk Tank 2					
Butterfat, %	4.68	4.77				
True Protein, %	True Protein, % 3.44 3.47					
~200 genomic H	~200 genomic Holstein heifers in the same herd					

on a similar diet – 89 lb milk, >5.2% fat, >3.6% protein

Two herds in Southern PA – both between 100 and 150 cows with diets formulated using similar dietary metrics as the previous study – these values represent the whole herd - these are Holstein cattle. Milk fat in both herds was about 4.2% before dietary interventions. Milk protein was approximately 3.1% prior to diet change.

Herd 1		Herd 2	
Milk yield, lb	90	Milk yield, lb	91
Milk fat, %	4.64	Milk fat, %	4.76
Milk true protein, %	3.48	Milk true protein, %	3.46
Milk fat yield, lb	4.12	Milk fat yield, lb	4.30
Milk protein yield, lb	3.12	Milk protein yield, lb	3.13

52

Take home messages

- Insulin is involved in protein synthesis in the mammary gland for both milk protein and fat
- Amino acids have other roles that involve signaling and supporting the metabolism of other products, such as milk fat and lactose
- Fatty acid enzymes are inducible and sense supplies of nutrients
- Amino acids, such as Lysine, can induce enzymes and signal pathways related to fatty acid synthesis and are required for optimum milk fatty acid yield
- To improve feed efficiency, formulating the correct amount of metabolizable essential amino acids relative to metabolizable energy is necessary

53

Some Steps to Optimize Energetic Efficiency and Reduce Urinary N

- Determine the most limiting nutrient energy or protein do cows and model agree?
- Evaluate the rumen N balance and urinary N excretion if high, then work to reduce the soluble protein within CNCPS rumen NH₃ balance between 120-140% and pay attention to BCVFA requirements and supply
- If grams MP is in excess, then decrease MP from feed in small increments
- Once you have ME and MP in balance and are happy with rumen N balance, focus on AA
- Met use 1.15-1.19 g MP Met per Mcal ME (CNCPS v6.55)
- Lys maintain a Lys:Met of ~ 2.7:1

Some Steps to Optimize Energetic Efficiency and Reduce Urinary N

- Pay attention to aNDFom digestibility and allocate the highest digestibility forages to the fresh and high cows
- With forages you want the lowest uNDF pool as possible to maximize the digestible aNDFom
- Don't overfeed starch or fatty acids and add some sugar need butyrate
- Formulate sugar at 5% to 8% DM
- Good rumen digestible starch sources in the 25-27% DM range
- Ether extract 4.4-4.7% and work towards a 1.5:1 relationship between palmitic and oleic

55

Formulation cons	siderations for component yields				
Pools					
Sugars	5 to 7% DM				
Starch	26-27% and 90% ruminal digestibility				
aNDFom	30-32% DM and >67% ruminal digestibility at 30 h uNDF as low as possible				
Fatty acids	Less than 4.5%				
Fatty acids	1.5:1 Palmitic:oleic				
Amino acids	Met 1.19 g/Mcal ME Lys 3.21 g/Mcal ME or 2.7x Met				

56

Thank you for your attention, for everyone who helped develop this work, and for the sponsors who keep it going.

mev1@cornell.edu

