

What are the opportunities for nutritional management in automated milking (robot) barns?

- Encourage voluntary milking visits throughout the day
 - Promote labor and robot efficiency
- Meet production needs throughout lactation
 - Encourage high peaks and persistency

T DAIRY

What have learned in research related to these opportunities?

- There are many approaches not one size fits all
- Cows need to be motivated to go and milk
- DMI (and its prediction) is key

DAIRY

- Cow behavior may dictate milking and feeding success
- There are opportunities to 'precision' feed

What have learned in research related to these opportunities?

• There are many approaches – not one size fits all

What do 'average' robot rations in Canada look like?

		PMR						AMS Concentrate					P-value ¹	
Item	National	East	QC	ON	West	SEM ²	National	East	QC	ON	West	SEM ²	PMR	AMS
N	149	7	17	75	50	_	157	8	23	76	54	_	_	_
DMI (kg/d)	21.1 ± 0.17	22.8 ^a	20.5 ^{bc}	21.5 ^{ab}	20.6 ^c	0.76	4.3 ± 0.09	4.12 ^{ab}	4.75 ^a	3.91 ^b	4.69 ^a	0.37	0.005	< 0.001
DM (%)	42.6 ± 0.52	40.4	41.0	43.0	43.1	2.32	88.3 ± 0.13	87.2	87.9	88.5	88.4	0.56	0.46	0.13
CP (% of DM)	16.1 ± 0.13	16.4 ^{ab}	17.2 ^a	15.8 ^b	16.1 ^b	0.59	19.3 ± 0.32	15.9 ^b	19.9 ^a	20.5 ^a	17.6 ^b	1.39	0.02	< 0.001
ADF (% of DM)	22.4 ± 0.21	21.2 ^c	24.5 ^a	21.9 ^c	22.9 ^{ab}	0.93	9.62 ± 0.25	8.0	10.4	9.6	9.6	0.69	0.001	0.36
NDF (% of DM)	35.3 ± 1.16	35.5	37.3	36.3	32.6	5.54	19.7 ± 0.92	18.3	22.6	19.5	18.3	3.68	0.53	0.48
NFC (% of DM)	38.3 ± 0.31	37.4 ^{ab}	38.0 ^{ab}	39.1 ^a	37.0 ^b	1.34	44.2 ± 0.90	54.0 ^a	44.2 ^{ab}	41.6 ^b	47.4 ^a	3.69	0.02	0.001
Starch (% of DM)	21.6 ± 0.35	20.7 ^b	19.3 ^b	23.3ª	19.4 ^b	2.31	32.2 ± 1.04	45.3 ^a	25.6 ^b	29.1 ^b	36.5 ^a	3.99	< 0.001	< 0.001
Sugar (% of DM)	4.59 ± 0.20	4.77 ^{ab}	5.40 ^{ab}	3.95 ^b	5.43 ^a	1.83	4.90 ± 0.14	4.21 ^{ab}	3.79 ^b	5.38 ^a	4.50 ^b	0.56	0.005	0.002
EE ³ (% of DM)	4.43 ± 0.09	3.89 ^b	3.73 ^b	4.05 ^b	5.17 ^a	0.36	3.64 ± 0.10	3.39 ^{ab}	3.09 ^b	3.87 ^a	3.58 ^{ab}	0.43	< 0.001	0.02
Ash (% of DM)	8.00 ± 0.18	7.20 ^b	8.11 ^{ab}	7.56 ^b	8.96 ^ª	0.69	5.82 ± 0.25	4.24	5.26	6.03	5.94	0.94	0.008	0.31
Ca (% of DM)	0.89 ± 0.01	0.86 ^b	1.02 ^a	0.89 ^b	0.85 ^b	0.07	0.82 ± 0.03	0.43°	0.85 ^{ab}	0.96 ^a	0.67 ^b	0.13	0.01	< 0.001
P (% of DM)	0.38 ± 0.01	0.39	0.40	0.37	0.39	0.03	0.62 ± 0.01	0.64 ^{ab}	0.67 ^a	0.67 ^a	0.52 ^b	0.05	0.16	< 0.001
K (% of DM)	1.50 ± 0.02	1.39 ^{bc}	1.64 ^a	1.45 ^c	1.56 ^{ab}	0.11	0.94 ± 0.02	0.80 ^b	0.99 ^{ab}	1.02 ^a	0.84 ^b	0.07	0.04	< 0.001
Cl (% of DM)	0.52 ± 0.01	0.59 ^a	0.60 ^a	0.48 ^b	0.55 ^a	0.05	0.50 ± 0.03	0.41 ^{ab}	0.70^{a}	0.50 ^{ab}	0.45 ^b	0.13	0.009	0.07
Mg (% of DM)	0.35 ± 0.01	0.34	0.37	0.35	0.34	0.03	0.38 ± 0.02	0.28 ^b	0.55 ^a	0.36 ^b	0.34 ^b	0.07	0.41	< 0.001
Na (% of DM)	0.41 ± 0.01	0.40	0.44	0.42	0.40	0.05	0.35 ± 0.02	0.22 ^{ab}	0.45 ^a	0.36 ^{ab}	0.30 ^b	0.09	0.71	0.061
NE _L (Mcal/kg DM)	1.61 ± 0.09	1.50 ^{ab}	1.52 ^c	1.62 ^b	1.66 ^a	0.17	1.70 ± 0.02	1.79	1.77	1.69	1.66	0.08	0.002	0.19
DAIRY														
at GUELPH					Van Soe	est et d	al. 2024. J	. Dairy S	Sci. http	s://doi.	org/10.	3168/j	ds.2023	-24355

at GUELPH

Van Soest et al. 2024. J. Dairy Sci. https://doi.org/10.3168/jds.2023-24355

Does robot diet ingredient and nutrient content associate with milking visits?

• Greater milking frequency $(2.8 \pm 0.4 \text{ milkings/d})$ was

at GUEL PH

- positively associated with free flow traffic cow systems (+0.62 milkings/d) and feed push-up frequency (+0.13 per 10 push-ups, average =12.9±8.6 times/d),
- while being negatively associated with PMR NFC content (-0.017 milkings per 1% increase; average = 38.3±0.31%)

How do we stimulate cows to access their PMR throughout the day?

- Provide diets that encourage a quick return to eating
 - High forage quality!

DAIRY

How do we stimulate cows to access their PMR throughout the day?

- Provide diets that encourage a quick return to eating
 - High forage quality!
- Proper feeding management

What have learned in research related to these opportunities?

- There are many approaches not one size fits all
- Cows need to be motivated to go and milk
- DMI (and its prediction) is key

Cows will adjust their PMR intake in response to their intake of robot concentrate

Study	DIM (Average ± SD)	Traffic flow	Substitution Ratio (kg DM drop in PMR for every 1 kg of concentrate)
Bach et al., 2007	191 ± 2.13	Free	1.14
Hare et al. 2018	227 ± 25	Guidad	1 58
Thate et al., 2010	123 ± 71	Guideu	1.58
Henrikson et al. 2018	32-320	Eroo	0.58 - 0.02
Hellinksell et al., 2018	14-330	Fiee	0.38 - 0.92
Henriksen et el. 2019	29-218	Eroo	0 69 0 50
Hellinksell et al., 2018	17-267	Fiee	0.09-0.50
Menajovsky et al., 2018	141 ± 13.6	Guided	0.78 - 0.89
Henrikson et al. 2010	Mid (15 to 240)	Ггоо	1.1
Henriksen et al., 2019	Late (240 to 305)	Free	2.9
Paddick et al., 2019	90.6 ± 9.8	Guided	0.97
Schwanke et al, 2019	47.1 ± 15.0	Free	0.63
Schwanke et al, 2022	123.9 ± 53.2	Free	0.54
Schwanke et al, in prep	218 ± 49	Free	0.77

Cows will adjust their PMR intake in response to their intake of robot concentrate

- Adjustment in PMR intake relative to concentrate...
 - Likely varies across DIM

at GUEL PH

- May be greater in guided traffic barns
- Highlights the importance of having accurate DMI predictions

What have learned in research related to these opportunities?

- There are many approaches not one size fits all
- Cows need to be motivated to go and milk
- DMI (and its prediction) is key

DAIRY

Cow behavior may dictate milking and feeding success

Do cows (consistently) receive the amount of robot feed they are supposed to?

- Milking frequency / time since last milking
- Dispensing rate / box time
 - Eating rate of various feed types
 - Maximum meal size

Cow behavior may dictate how much robot concentrate cows can receive...

- Eating rates vary with feed type
 - ~430 g/min may be near maximal for pellet
- Published average rates vary from ~200-300 g/min

(Beauchemin et al. 2002, Maekawa et al. 2002, Sporndly and Asberg, 2006, Harper et al. 2016)

DAIRY at GUELPH

at GUELPH

Cow behavior may dictate how much robot concentrate cows can receive...

	M	ilking dura	tion, min	
	5	7	9	
Dispensing rate,				
g/min	Maximum	amount of	fered/mil	king (kg
200	1.00	1.40	1.80	2.20
300	1.50	2.10	2.70	3.30
400	2.00	2.80	3.60	4.40
500	2.50	3.50	4.50	5.50
600	3.00	4.20	5.40	6.60

Cow behavior may dictate how much robot concentrate cows can receive...

	Milking duration, min					
	5	7	9	11		
Dispensing rate,						
g/min	Maximum amount offered/milking (kg)					
200	1.00	1.40	1.80	2.20		
300	1.50	2.10	2.70	3.30		
400	2.00	2.80	3.60	4.40		
500	2.50	3.50	4.50	5.50		
600	3.00	4.20	5.40	6.60		

Eating behavior in robot dictates how much 'average' cows can receive...

The 'average' cow eats concentrate at 250 g/min, in a ~7 min milking, that is about 1.75 kg per milking
With a target of 3 milkings/day, on average, that is an average of 5.25 kg/cow/d of concentrate

Behavioral individuality ('personality') may affect robot visits and nutritional targets...

 Cows who were more "fearful" were less likely to be delivered the target of 6.0 kg/d (H-AMS); no effect for cows on low allocation (3.0 kg/d: L-AMS)

T DAIRY

Schwanke et al. 2022. J. Dairy Sci. 105:6290-6306

What have learned in research related to these opportunities?

- There are many approaches not one size fits all
- Cows need to be motivated to go and milk
- DMI (and its prediction) is key
- Cow behavior may dictate milking and feeding success
- There are opportunities to 'precision' feed

What are the opportunities to 'precision feed' cows in robots?

- Feed tables (of robot concentrate) must be based on stage of lactation and production level
- We have opportunities to supplement cows at times of greater needs

Ketosis has been reported to be more prevalent in robot herds

- Study of 791 dairy herds in Ontario, Canada
 - For multiparous cows, the odds of hyperketolactia (elevated milk BHB) increased by 1.45 fold on a farm with a robot

What are the opportunities to 'precision feed' cows in robots?

- Feed tables (of robot concentrate) must be based on stage of lactation and production level
- We have opportunities to supplement cows at times of greater needs
 - Increasing energy supplementation in early lactation
 - Sugar (molasses) Moore et al. 2020. J. Dairy Sci. 103:10506-10518
 - Glycerol McWilliams et al. J. Dairy Sci. in review

