
New Insights from University of Wisconsin Transition Cow Research

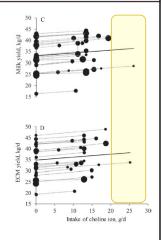
Dr. Heather White

University of Wisconsin-Madison Professor, Nutritional Physiology Faculty Director, Dairy Innovation Hub

1

Nutrition Can Propagate our Impact

- Impact of RP Choline supplementation on lactation performance
- How does RP Choline impact the transition period?
- Impact of supplementing cows with RP Choline on offspring growth and health


3

Choline as a Nutritional Intervention

Choline meta-analysis of 23 transition cow studies; 74 treatment means; 1,938 cows

- Energy-corrected milk: Increased 1.61 kg/day
- Milk fat yield: Increased 0.08 kg/day
- Milk protein yield: Increased 0.06 kg/day
- DMI: Increased pre- and postpartum
 0.28 and 0.47 kg/d

Arshad et al, 2020

Prepartum RPC Dose

- Multiparous cows (n=116) enrolled 21 days prior to calving and fed in electronic feeding gates
- Treatment additives were balanced for non-choline nutrients and amount, and mixed into the TMR

- Control: no RPC
- RPC1_{RD}: recommended dose (15 g choline ion; ReaShure, Balchem, Corp)
- RPC2_{RD}: recommended dose (15 g choline ion; ReaShure XC, Balchem, Corp)
- RPC2_{HD}: high dose (22 g choline ion; ReaShure XC, Balchem, Corp)

Prepartum:

Individual Cow DMI
Increasing prepartum RPC

Holdorf et al., 2023, JDS

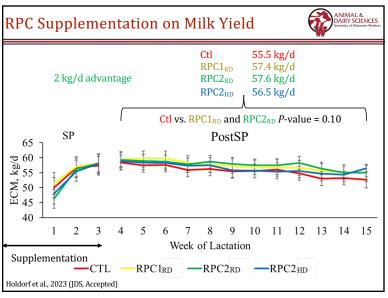
5

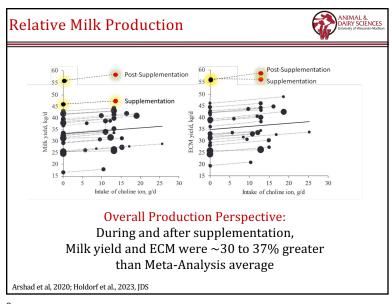
Prepartum RPC Dose

Pre > Post

- Control > Control
- RPC1_{RD} > **RPC1**_{RD}
- $RPC2_{RD} > RPC2_{RD}$
- RPC2_{HD} > **RPC2**_{RD}

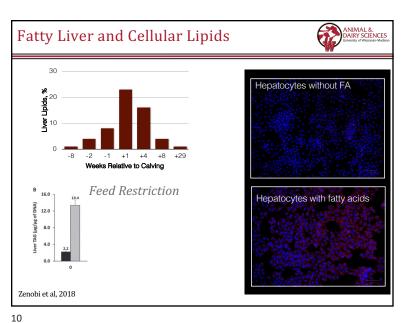
Prepartum:

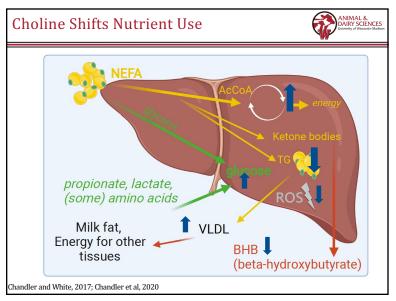


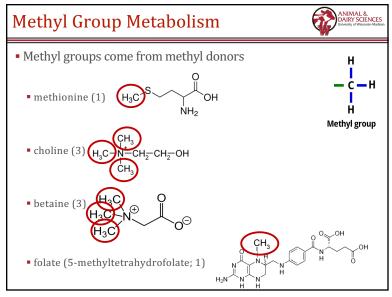


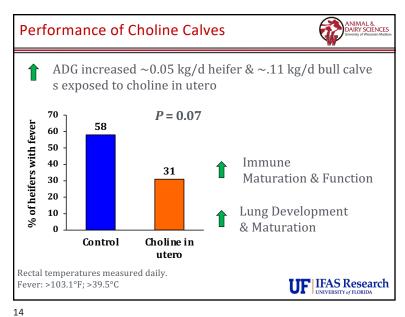
Individual Cow DMI Increasing prepartum RPC Pens of 8, RD of treatments maintained Lactating (~21 DRTC to 100 DRTC): Mixed pens of 16, common diet

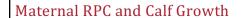
Postpartum (1 to ~21 DRTC):

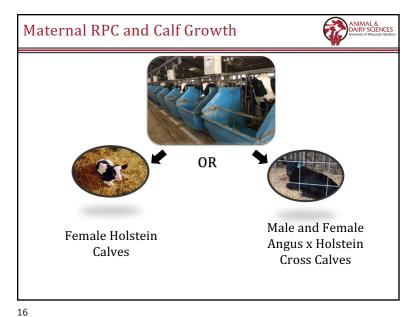

Holdorf et al., 2023 (JDS, Accepted)

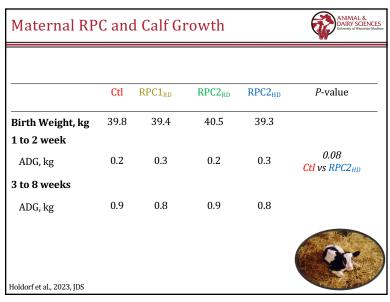





What is the mechanism of choline's effects during, and AFTER, supplementation of RP choline??






Recommended doses of RPC1 and RPC2 increased colostrum yield 1 and 2 kg, respectively

*in this study, we fed all calves the same a mount of colostrum

	Ctl	RPC1 _{RD}	RPC2 _{RD}	RPC2 _{HD}	<i>P</i> -value
Colostrum Yield, kg	3.4	4.4	5.4	4.2	0.04 Ctl vs RD
Colostrum Quality, brix %	25.7 ^{ab}	24.4b	24.8 ^{ab}	26.7ª	0.08 Trt
Holdorf et al., 2023, JDS					

Challenges happen on farm, even during research studies...

Maternal RPC and Calf Health

- There was no evidence for an effect of treatment ($P \ge 0.12$) on bloat, respiratory, or fecal score
- No interaction of maternal trt x bloat on ADG

Holdorf et al., 2023, JDS

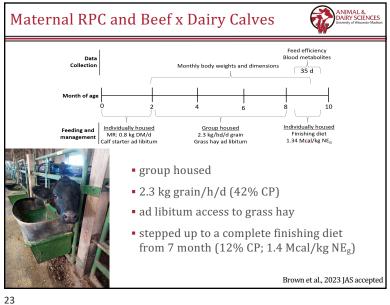
19

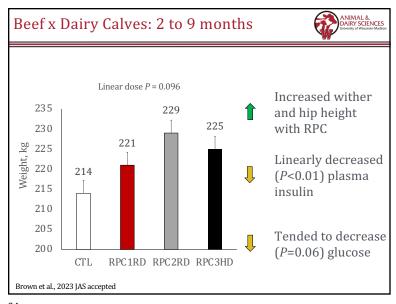
Maternal RPC and Calf Growth							
-	Ctl	RPC1 _{RD}	RPC2 _{RD}	RPC2 _{HD}	<i>P</i> -value		
Birth Weight, kg							
Female	38.8	41.8	38.5	42.0			
Male	45.5	45.4	47.3	44.1			
1 to 2 week							
ADG, kg	0.3	0.3	0.3	0.2			
3 to 8 weeks							
ADG, kg					0.01 trt x time 0.08 <mark>Ctl</mark> vs RPC2 _{HD}		
Female	1.0	0.9	1.0	1.0			
Male	$1.0^{\rm b}$	1.0^{ab}	1.1ab	1.2 ^b			
Holdorf et al., 2023 (JDS,	Acconted)						

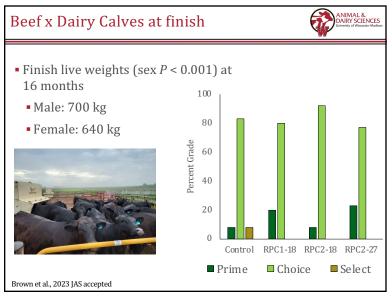
Was DNA methylation increased with in utero choline exposure?

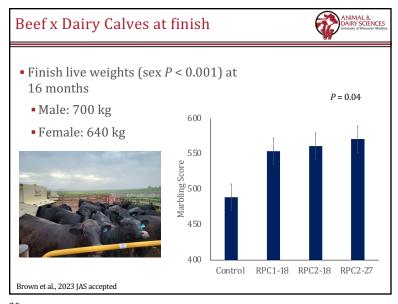
Yes . . . in male Holstein x Angus calves

But...
There are also differences in energy, growth, and gut integrity markers

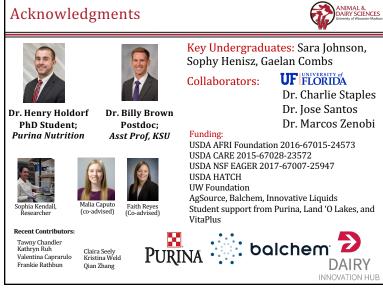

21


We didn't stop there, because:




- 1. baseline data is important
- 2. sometimes you do things that are motivated by the desire to bring things full circle

Long-Lasting Impact from Choline


- Strategic nutritional interventions during the transition period can have long-term impacts on cow and calf
- Mechanism of RP Choline action is through improved liver function
- Supplementing RP Choline during the transition period tended to increase energy-corrected milk yield even at higher production levels
 - Postpartum production relative to prepartum intake, together with long-lasting effects, suggests changes in metabolism or nutrient use efficiency
- Supplementation of cows with RP Choline also improves calf growth, immune function, and metabolic health and supported carcass quality in beef x dairy calves
- Higher supplementation rates (higher than recommended dose) of RPC resulted in further benefits to calves, but not cows

27

Overall Take-Home Messages

- Consistent postpartum production benefits are observed
- Even in very high producing cows and with cows with high genetic merit for milk
- Regardless of BCS
- How? Shifts in metabolism and nutrient partitioning to support increased production and maintained or improved health
- In utero programming provides added benefits to the calf
 - Benefits on calf growth and health are observed with maternal choline supplementation
- Improved feed efficiency to finish weight and improved marbling in Angus x Holstein
- How? Increased colostrum yield, increased global methylation, and changes in calf metabolism

