

Primary goal of all heifer rearing programs

- Raise the highest **<u>quality</u>** heifer that can maximize profits when she enters the lactating herd.
- No <u>limitations</u> that detract from her ability to produce milk under the farm's management system.
- Optimize <u>profits</u> by obtaining highest **quality** heifer in lowest possible cost in least amount of time.
- Raise the number of <u>heifers required</u> to meet the goals of the dairy business.

Financial management – applied to calves!

- Historical = low cost/day
 - Limited milk
 - Early weaning
 - Calf ranch approach economy of scale, specialization and protocol development – past and future???

• What about optimizing returns?

Preweaning morbidity

- Respiratory disease <10%
- Define respiratory disease?
- Ultrasound lungs?
- Impact of respiratory disease on lifetime performance?
 - Rossini et al (2004) Treat >2X = reduced herd life and increased AOFC.
 - Bach et al (2010) Treat >4x =1.87 odds of not completing 1st lactation.

Growth rate Pouble birth weight by 56 days? S5 lb. birth weight = 1.5 lb. / day What is genetic potential for growth? Heifers that completed 2nd lactation free more between 12 to 65 days of age than those that did not. (Bach, 2010) Each lb. of preweaning ADG = 850-1,30 lb. more milk in 1st lactation

(Soberon et al)

Optimizing our returns – biology and \$\$\$

Instead of cost/day – cost / lb(g) of gain

Nutrient requirements for maintenance and gain

11

\$\$ / pound gained for 120 lb calf

Type of liquid diet	2 qt. twice daily (1lb solids)	3 qt 3x daily (2.25 lb. solids)
Whole milk – 3.25% pr 3.75% fat	\$2.95	\$2.08
Milk replacer – 20% CP 20% fat 12.5% solids	\$3.23	\$2.07
Milk replacer – 24% CP 20% fat 12.5% solids	\$2.63	\$1.77
Milk replacer – 26% CP 17% fat 12.5% solids	\$2.39	\$1.82
Milk replacer – 28% CP 20% fat 12.5% solids	\$2.24	\$1.67
Milk replacer – 28% CP 25% fat 12.5% solids	\$2.31	\$1.62

Whole or waste milk? What is cost of waste milk? What is cost of pasteurizing?

Robert Corbett – May /June 2018 – Dairy Herd Management

Impa	act of envi	ronme	nt on A	DG
At colder temperature	es – energy is diverted fro co	m growth to ma st/gain	intenance = Les	s efficiency and higher
• At higher intakes, prote	ein intake may be limiting	daily growth an	nd excess energy	= more body condition
Whole Milk Intake Quarts	Environmental Temperature (°F)			
	Allowable gain	68	40	20
4	Energy	.85	.36	Lose weight
	Protein		.83	
	\$/Ib gain	\$1.81	\$4.27	infinite
8	Energy	2.47	2.1	1.9
-	Protein 1.9			
	\$/lh gain	\$1.25	\$1.47	\$1.63

Advantages of body condition in preweaned calf?

Optimizing returns - cont'd.

- Control involuntary culling rate in milking herd
- Minimize calf mortality
- Optimize potential of what you raise
 - Nutrition feed them to realize genetic potential
 - Health minimize impact of disease.
- Biosecurity risk of purchasing replacements.

Impact on controlling shrink

24

Canada – February 2020 Calves may be transported for up to 12 hours as long as dehydration, starvation and exhaustion are prevented.

Once 12 hours is reached, they must be provided with feed, water and rest.

Calves 8 days and under may only be transported once and are prohibited from going to assembly centers.

Labor efficiency and effectiveness

33

Calf care tasks can be labor intensive

- Maternity calving, colostrum harvest/storage
- Newborn care navels, vaccinations, colostrum feeding, transport
- Milk prep / pasteurizer / storage
- Milk replacer
- Milk feeding bucket or bottle, sanitation
- Calf starter feeding
- Health team
- Housing bedding, maintenance, sanitation

Impact of housing on labor effectiveness and efficiency?

Nutrient management

Inclusion of youngstock and calves in nutrient management plans

Factor for farms considering calf and heifer growers.

Accommodate nutrient flow from calf raising facilities

37

Facilities for calves and nutrient effluent management

How do you "manage" your calves?

- to handle or direct with a degree of skill: such as:
- to exercise executive, administrative, and supervisory direction of, <u>manage</u> a business
- Hmmm.... Apply this to the calf enterprise

Daily calf monitor Milk prep		
Mixing	AM	РМ
No. of calves	235	235
Lbs of Milk	1050	1030
Lbs of water	900	1000
Lbs of milk replacer	150	150
Total lbs of solution	2100	2180
Temperature of solution on truck when leaving barn	105	95

Ι	Daily calf monitor Feeding		
Temperature milk – last calf fed	92	91	
Number of slow or non drinkers	2	14	
Tag numbers of slow/nondrinkers/did not finish all their milk	2367, 2369	2367, 2369, 2100, 2102, 2105, 2108, 2109, 2110, 2115, 2116 2118, 2120, 2122, 2123	

Health Document all treatments in log and report abnormal event to DVM or mgr.		
Number of scouring calves	0	8
Number respiratory calves	0	0
Number of navel calves	1	2
Deads (immediate report)	0	1
Tag numbers treated E= electrolytes R= Respiratory O= other D = deads	2367e, 2369e, 2100e, 2108e,	2109e, 2110e, 2115e, 2116e

Impact of technology

- Robotic milking Are these herds managed differently?
- Apply this mindset to managing calves
- Records
 - Consumption, drink speed, breakoffs, unrewarded visits, treatments

Optimize the calf program for the future!

- Calf behavior cow behavior
- Labor efficiency, effectiveness and satisfaction
- Nutrient management
- Profit